Wir haben festgestellt, dass Sie unsere Website von Vereinigte Staaten aus besuchen.
Für Ihr Land (Vereinigte Staaten) gibt es eine eigene Version der Website.

Zu Vereinigte Staaten wechseln
 Technologien

IntelliCuff®. Automatischer Cuff-Druck-Kontroller

Manuelles Cuff-Druck-Management

Eine ständige Aufgabe. Kontinuierliches Cuff-Druck-Management

Herkömmliche Lösungen für das Cuff-Druck-Management erfordern, dass Sie den Cuff-Druck von Hand überwachen und einstellen.

Um die gewünschten Cuff-Druck-Bereiche jederzeit aufrechtzuerhalten, können täglich bis zu acht manuelle Anpassungen erforderlich sein (Chenelle CT, Oto J, Sulemanji D, Fisher DF, Kacmarek RM. Evaluation of an automated endotracheal tube cuff controller during simulated mechanical ventilation. Respir Care. 2015;60(2):183-190. doi:10.4187/respcare.033871​).

IntelliCuff eigenständiges Gerät

Die Lösung ist einfach! Automatische Cuff-Druck-Kontrolle

IntelliCuff sichert die Atemwege Ihres Patienten (Chenelle CT, Oto J, Sulemanji D, Fisher DF, Kacmarek RM. Evaluation of an automated endotracheal tube cuff controller during simulated mechanical ventilation. Respir Care. 2015;60(2):183-190. doi:10.4187/respcare.033871​), indem der eingestellte Cuff-Druck bei erwachsenen, pädiatrischen und neonatalen Patienten kontinuierlich gemessen und automatisch aufrechterhalten wird.

Sie können ihn entweder als eigenständiges Gerät für alle Beatmungsgeräte oder als integrierte Lösung für den HAMILTON-C6 und den HAMILTON-G5/S1 verwenden.

Cuff-Druck-Schlauch

Wie funktioniert das? IntelliCuff-Prinzipien

Sie stellen einfach den gewünschten Cuff-Druck ein und IntelliCuff übernimmt die kontinuierliche Überwachung und Aufrechterhaltung des eingestellten Drucks. Der im Cuff gemessene Druck wird als Monitoring-Wert angezeigt.

Im Falle eines beschädigten Cuffs löst IntelliCuff einen Alarm aus und kompensiert die Leckage, um den Atemweg sicher zu halten.

Sandra Rupp

Kundenstimmen

Wir setzen IntelliCuff bei maschinell beatmeten Patienten als Standardfunktion ein, um VAP zu vermeiden. IntelliCuff kontrolliert den Cuff-Druck automatisch und regelmässig. Das ist eine grosse Hilfe für uns Pflegekräfte, da wir den Druck nicht jede Stunde manuell überprüfen müssen.

Sandra Rupp

Stationsleiterin Intensivpflege
Kantonsspital Graubünden, Chur, Schweiz

Statistische Grafik: Lorente L. Crit Care. 2014 Apr 21;18(2):R77.

Schön und gut, aber ist es auch sicher? Klinische Nachweise im Überblick

Die Verwendung eines kontinuierlichen Cuff-Druck-Kontrollsystems wie IntelliCuff ist effektiver bei der Aufrechterhaltung des Cuff-Drucks innerhalb eines optimalen Bereichs (Chenelle CT, Oto J, Sulemanji D, Fisher DF, Kacmarek RM. Evaluation of an automated endotracheal tube cuff controller during simulated mechanical ventilation. Respir Care. 2015;60(2):183-190. doi:10.4187/respcare.033871​) und trägt zur Verringerung von Mikroaspiration und ventilatorinduzierter Pneumonie bei (Lorente L, Lecuona M, Jiménez A, et al. Continuous endotracheal tube cuff pressure control system protects against ventilator-associated pneumonia. Crit Care. 2014;18(2):R77. Published 2014 Apr 21. doi:10.1186/cc138372​, Nseir S, Zerimech F, Fournier C, et al. Continuous control of tracheal cuff pressure and microaspiration of gastric contents in critically ill patients. Am J Respir Crit Care Med. 2011;184(9):1041-1047. doi:10.1164/rccm.201104-0630OC3​).

Um Verletzungen der Trachea und Druckgeschwüre zu vermeiden, ist der Cuff-Druck beim IntelliCuff standardmässig auf 25 cmH2O eingestellt (Wang R, Sun B, Li X, et al. Mechanical Ventilation Strategy Guided by Transpulmonary Pressure in Severe Acute Respiratory Distress Syndrome Treated With Venovenous Extracorporeal Membrane Oxygenation. Crit Care Med. 2020;48(9):1280-1288. doi:10.1097/CCM.00000000000044454​).

Grafische Darstellung: Studenten werfen ihre Hüte in die Luft

Gut zu wissen! Schulungsressourcen zu IntelliCuff

Zubehör und Verbrauchsmaterialien

Verfügbarkeit

IntelliCuff ist als eigenständiges Gerät für alle Beatmungsgeräte oder als integrierte Lösung verfügbar; beim HAMILTON-C6 und HAMILTON-G5 als Option und beim HAMILTON-S1 als Standardfunktion.

Evaluation of an automated endotracheal tube cuff controller during simulated mechanical ventilation.

Chenelle CT, Oto J, Sulemanji D, Fisher DF, Kacmarek RM. Evaluation of an automated endotracheal tube cuff controller during simulated mechanical ventilation. Respir Care. 2015;60(2):183-190. doi:10.4187/respcare.03387



BACKGROUND

Maintaining endotracheal tube cuff pressure within a narrow range is an important factor in patient care. The goal of this study was to evaluate the IntelliCuff against the manual technique for maintaining cuff pressure during simulated mechanical ventilation with and without movement.

METHODS

The IntelliCuff was compared to the manual technique of a manometer and syringe. Two independent studies were performed during mechanical ventilation: part 1, a 2-h trial incorporating continuous mannikin head movement; and part 2, an 8-h trial using a stationary trachea model. We set cuff pressure to 25 cm H2O, PEEP to 10 cm H2O, and peak inspiratory pressures to 20, 30, and 40 cm H2O. Clinical importance was defined as both statistically significant (P<.05) and clinically significant (pressure change [Δ]>10%).

RESULTS

In part 1, the change in cuff pressure from before to after ventilation was clinically important for the manual technique (P<.001, Δ=-39.6%) but not for the IntelliCuff (P=.02, Δ=3.5%). In part 2, the change in cuff pressure from before to after ventilation was clinically important for the manual technique (P=.004, Δ=-14.39%) but not for the IntelliCuff (P=.20, Δ=5.65%).

CONCLUSIONS

There was a clinically important drop in manually set cuff pressure during simulated mechanical ventilation in a stationary model and an even larger drop with movement, but this was significantly reduced by the IntelliCuff in both scenarios. Additionally, we observed that cuff pressure varied directly with inspiratory airway pressure for both techniques, leading to elevated average cuff pressures.

Continuous endotracheal tube cuff pressure control system protects against ventilator-associated pneumonia.

Lorente L, Lecuona M, Jiménez A, et al. Continuous endotracheal tube cuff pressure control system protects against ventilator-associated pneumonia. Crit Care. 2014;18(2):R77. Published 2014 Apr 21. doi:10.1186/cc13837



INTRODUCTION

The use of a system for continuous control of endotracheal tube cuff pressure reduced the incidence of ventilator-associated pneumonia (VAP) in one randomized controlled trial (RCT) with 112 patients but not in another RCT with 142 patients. In several guidelines on the prevention of VAP, the use of a system for continuous or intermittent control of endotracheal cuff pressure is not reviewed. The objective of this study was to compare the incidence of VAP in a large sample of patients (n = 284) treated with either continuous or intermittent control of endotracheal tube cuff pressure.

METHODS

We performed a prospective observational study of patients undergoing mechanical ventilation during more than 48 hours in an intensive care unit (ICU) using either continuous or intermittent endotracheal tube cuff pressure control. Multivariate logistic regression analysis (MLRA) and Cox proportional hazard regression analysis were used to predict VAP. The magnitude of the effect was expressed as odds ratio (OR) or hazard ratio (HR), respectively, and 95% confidence interval (CI).

RESULTS

We found a lower incidence of VAP with the continuous (n = 150) than with the intermittent (n = 134) pressure control system (22.0% versus 11.2%; p = 0.02). MLRA showed that the continuous pressure control system (OR = 0.45; 95% CI = 0.22-0.89; p = 0.02) and the use of an endotracheal tube incorporating a lumen for subglottic secretion drainage (SSD) (OR = 0.39; 95% CI = 0.19-0.84; p = 0.02) were protective factors against VAP. Cox regression analysis showed that the continuous pressure control system (HR = 0.45; 95% CI = 0.24-0.84; p = 0.01) and the use of an endotracheal tube incorporating a lumen for SSD (HR = 0.29; 95% CI = 0.15-0.56; p < 0.001) were protective factors against VAP. However, the interaction between type of endotracheal cuff pressure control system (continuous or intermittent) and endotracheal tube (with or without SSD) was not statistically significant in MLRA (OR = 0.41; 95% CI = 0.07-2.37; p = 0.32) or in Cox analysis (HR = 0.35; 95% CI = 0.06-1.84; p = 0.21).

CONCLUSIONS

The use of a continuous endotracheal cuff pressure control system and/or an endotracheal tube with a lumen for SSD could help to prevent VAP in patients requiring more than 48 hours of mechanical ventilation.

Continuous control of tracheal cuff pressure and microaspiration of gastric contents in critically ill patients.

Nseir S, Zerimech F, Fournier C, et al. Continuous control of tracheal cuff pressure and microaspiration of gastric contents in critically ill patients. Am J Respir Crit Care Med. 2011;184(9):1041-1047. doi:10.1164/rccm.201104-0630OC



RATIONALE

Underinflation of the tracheal cuff frequently occurs in critically ill patients and represents a risk factor for microaspiration of contaminated oropharyngeal secretions and gastric contents that plays a major role in the pathogenesis of ventilator-associated pneumonia (VAP).

OBJECTIVES

To determine the impact of continuous control of tracheal cuff pressure (P(cuff)) on microaspiration of gastric contents.

METHODS

Prospective randomized controlled trial performed in a single medical intensive care unit. A total of 122 patients expected to receive mechanical ventilation for at least 48 hours through a tracheal tube were randomized to receive continuous control of P(cuff) using a pneumatic device (intervention group, n = 61) or routine care of P(cuff) (control group, n = 61).

MEASUREMENTS AND MAIN RESULTS

The primary outcome was microaspiration of gastric contents as defined by the presence of pepsin at a significant level in tracheal secretions collected during the 48 hours after randomization. Secondary outcomes included incidence of VAP, tracheobronchial bacterial concentration, and tracheal ischemic lesions. The pneumatic device was efficient in controlling P(cuff). Pepsin was measured in 1,205 tracheal aspirates. Percentage of patients with abundant microaspiration (18 vs. 46%; P = 0.002; OR [95% confidence interval], 0.25 [0.11-0.59]), bacterial concentration in tracheal aspirates (mean ± SD 1.6 ± 2.4 vs. 3.1 ± 3.7 log(10) cfu/ml, P = 0.014), and VAP rate (9.8 vs. 26.2%; P = 0.032; 0.30 [0.11-0.84]) were significantly lower in the intervention group compared with the control group. However, no significant difference was found in tracheal ischemia score between the two groups.

CONCLUSIONS

Continuous control of P(cuff) is associated with significantly decreased microaspiration of gastric contents in critically ill patients.

Mechanical Ventilation Strategy Guided by Transpulmonary Pressure in Severe Acute Respiratory Distress Syndrome Treated With Venovenous Extracorporeal Membrane Oxygenation.

Wang R, Sun B, Li X, et al. Mechanical Ventilation Strategy Guided by Transpulmonary Pressure in Severe Acute Respiratory Distress Syndrome Treated With Venovenous Extracorporeal Membrane Oxygenation. Crit Care Med. 2020;48(9):1280-1288. doi:10.1097/CCM.0000000000004445



OBJECTIVES

Previous studies have suggested that adjusting ventilator settings based on transpulmonary pressure measurements may minimize ventilator-induced lung injury, but this has never been investigated in patients with severe acute respiratory distress syndrome supported with venovenous extracorporeal membrane oxygenation. We aimed to evaluate whether a transpulmonary pressure-guided ventilation strategy would increase the proportion of patients successfully weaned from venovenous extracorporeal membrane oxygenation support in patients with severe acute respiratory distress syndrome.

DESIGN

Single-center, prospective, randomized controlled trial.

SETTING

Sixteen-bed, respiratory ICU at a tertiary academic medical center.

PATIENTS

Severe acute respiratory distress syndrome patients receiving venovenous extracorporeal membrane oxygenation.

INTERVENTIONS

One-hundred four patients were randomized to transpulmonary pressure-guided ventilation group (n = 52) or lung rest strategy group (n = 52) groups. Two patients had cardiac arrest during establishment of venovenous extracorporeal membrane oxygenation in the lung rest group did not receive the assigned intervention. Thus, 102 patients were included in the analysis.

MEASUREMENTS AND MAIN RESULTS

The proportion of patients successfully weaned from venovenous extracorporeal membrane oxygenation in the transpulmonary pressure-guided group was significantly higher than that in the lung rest group (71.2% vs 48.0%; p = 0.017). Compared with the lung rest group, driving pressure, tidal volumes, and mechanical power were significantly lower, and positive end-expiratory pressure was significantly higher, in the transpulmonary pressure-guided group during venovenous extracorporeal membrane oxygenation support. In the transpulmonary pressure-guided group, levels of interleukin-1β, interleukin-6, and interleukin-8 were significantly lower, and interleukin-10 was significantly higher, than those of the lung rest group over time. Lung density was significantly lower in the transpulmonary pressure-guided group after venovenous extracorporeal membrane oxygenation support than in the lung rest group.

CONCLUSIONS

A transpulmonary pressure-guided ventilation strategy could increase the proportion of patients with severe acute respiratory distress syndrome successfully weaned from venovenous extracorporeal membrane oxygenation.