Author: Ken Hargett
Date of first publication: 07.09.2020
This results in increased resistance in the expiratory limb of the circuit and can affect the function of the ventilator. It is important for the caregivers to recognize the development of resistance over time. The most extreme case of filter resistance is when the filter is completely clogged, generating the Exhalation obstructed alarm on the ventilator.
The criteria for this alarm on a HAMILTON-G5 ventilator are as follows: Flow is < 300 ml/sec 220 milliseconds after the detection window is open or delta pressure does not drop by 33% of peak value.
Hamilton Medical ventilators utilizing a proximal flow sensor measure pressure and flow at the patient airway opening and display calculated values of airway compliance and resistance in the Dynamic Lung window. While these values reflect the condition of the patient, they do not track resistance changes in the expiratory filter. There are several ways to recognize increasing resistance that is building up over time.
Particle build up impedes expiratory flow out of the circuit. The expiratory flow rate decreases over time as the resistance increases. Monitoring of the expiratory flow is a way to determine increasing resistance in the expiratory filter. Expiratory flow is a function of the lung recoil and is passive in most instances and related to the compliance of the lung. Table 1 shows expiratory flow rates for two compliance conditions. Normal compliance has a lower initial expiratory flow than the reduced compliance lung. Over time as the expiratory filter resistance increases from new filter baseline to R2, R3 and finally R4, expiratory flow decreases in both compliance conditions. We can also observe that the shape of the expiratory flow curve changes as resistance increases. It takes longer for the flow to return to zero as resistance increases.
The value of expiratory flow can be displayed in several ways. By freezing the flow graphic and using the controller to move the indicator to the maximum expiratory flow, the value is displayed as circled in the graphic below. Additionally, breath-to-breath values are displayed in panel 3/12 as shown in Figure 1 below.
The expiratory time constant describes the speed of lung emptying after the pressure drop created by opening of the expiratory valve. The components of the RCexp are compliance and resistance. A stiff lung (e.g., ARDS) with reduced compliance and normal or near-normal resistance has a short RCexp, whereas a more compliant lung (e.g., COPD) with normal to high compliance, but increased resistance, has a longer RCexp. The table below shows typical values for RCexp for the different lung conditions (
Lung condition | RCexp (sec) |
---|---|
Normal | 0.5–0.7 |
ARDS | 0.4–0.6 |
COPD | 0.7–2.1 |
Hamilton Medical ventilators measure the RCexp at 75% of the exhaled volume, which has been shown to improve accuracy (
Panel 2 below shows changes in the RCexp with a low compliance lung (Cstat = 19.1 ml/cmH2O). RCexp goes from the expected value for ARDS of 0.29 to 0.69, which is indicative of a more compliant lung. No change in compliance or inspiratory resistance values displayed are seen with increases in expiratory filter resistance.
It should be a routine practice to change out expiratory filters on a routine basis. In the event of filter shortages, institutions have prolonged each filter use and often the filter may be neglected.
A good way to track increases in expiratory filter resistance over time is the use of trending. Plotting expiratory flow and RCexp will show the gradual increases in filter resistance. In Figure 2 we see decreases in expiratory flow and increases in RCexp over the last hour.
In order to prevent contamination of the surrounding area, it is advisable to maintain a closed ventilator circuit at all times. Changing out in-line expiratory filters requires briefly breaking the circuit. Trained staff should be wearing PPE including N-95 mask, gowns, gloves and face shields. Additional protective equipment might also be necessary as per hospital guidelines.
A direct disconnection of the ventilator circuit will result in a purge of gas that can spray the room with aerosol particles. To avoid contamination by aerosols while changing the filter, place the ventilator in standby before every disconnection of the circuit.. If you prefer not to put the ventilator in standby, the suctioning tool (Oxygen enrichment button) will lessen the flow during disconnection and reduce aerosols. When this feature is active, disconnection of the ventilator results in suppression of ventilation and not a purge of high flow gas. The ventilator will display the Ventilation suppressed banner during disconnect and resume ventilation after the circuit has been reconnected.
Review of Hamilton Medical’s document on safe use of Hamilton Medical ventilators with highly infectious diseases is recommended (4). More information regarding the use of filters can also be found on Hamilton Medical’s dedicated COVID-19 webpage.
Full citations below: (