We have detected that you are visiting our website from United States.
We offer a separate version of the website for your country (United States).

Switch to United States
 Products

HAMILTON-C6. The next generation of intelligent ICU ventilators

HAMILTON-C6

Our intelligent ICU ventilator. The next generation

  • With all state-of-the art ventilation modes and therapies
  • For all patient populations
  • Featuring a wide range of diagnostic tools
  • Peak flow of 260 l/min
HAMILTON-C6
HAMILTON-C6

Our intelligent ICU ventilator. The next generation

  • With all advanced ventilation modes and therapies
  • For adult, pediatric, and neonatal patient groups
  • Featuring a wide range of diagnostic tools
  • Peak flow of 260 l/min
HAMILTON-C6

On the big screen. Important ICU ventilation data at a glance

  • 17-inch detachable touch screen
  • Configurable screen setups
  • Over 50 monitoring parameters
  • 72-hour trends
HAMILTON-C6

Shhhh! Don't wake your patients

With an average of 35 dB, it is our most silent one.

HAMILTON-C6

Guaranteed to last. Our high-performance turbine

With its powerful turbine, this ICU ventilator is completely independent from a high‑pressure air outlet and external compressors. This gives you maximum mobility so you are free to move around the hospital. We also offer a warranty on the turbine for the expected lifetime of the HAMILTON-C6 ventilator.

HAMILTON-C6

Humidifier controls and status. On the ventilator display

Operate the HAMILTON-H900 humidifier comfortably directly from the ventilator display. The HAMILTON-H900 synchronizes with the ventilator and selects the humidification mode automatically based on the ventilation mode.

HAMILTON-C6

Fiercely independent. No compressed air and battery powered

  • High‑performance turbine
  • Typically 1.5 hours of battery time with one battery, 3 hours with two batteries
  • Two oxygen cylinder holders
HAMILTON-C6
Connect cable

Data for the big picture. Comprehensive connectivity solutions for PDMS, monitoring, and EMS

Graphic illustration: two nurses assist intubated patients with walking

The sooner the better. Early mobilization

With its high-performance turbine, battery, compact size, and state-of-the-art ventilation modes, the HAMILTON-C6 is also at your patient's side for their first steps out of bed.

Want to see more?
Explore the 3D model

Discover the HAMILTON-C6 ICU ventilator from every angle and click on the hotspots to learn more.

For quick details

  • Standard
  • Option
  • Not available
Patient groups Adult/Ped, Neonatal
Dimensions (W x D x H) 423 x 250 x 415 mm (monitor)
360 x 250 x 394 mm (ventilation unit)
640 x 560 x 1400 mm (incl. trolley)
Weight Monitor (interaction panel) without shelf mount: 7.8 kg (17.2 lb)
Monitor with shelf mount: 10 kg (22 lb)
Ventilation unit with shelf mount: 10.5 kg (23.2 lb)
Ventilation unit, monitor, and trolley: 46 kg (101 lb)
Monitor size and resolution 17 in (431.8 mm) diagonal
1920 x 1200 pixels
Detachable monitor
Battery operating time 1.5 h with one battery
3 h with two batteries
Hot-swappable battery
Air supply Integrated turbine with warranty for the expected lifetime of the HAMILTON-C6 ventilator
O2 connector DISS (CGA 1240) or NIST
Connectivity Three COM ports, two USB ports, DVI, Nurse call
Loudness 37 dB in normal operation
Volume controlled, flow controlled
Volume targeted, adaptive pressure controlled
Intelligent ventilation ASV®, INTELLiVENT®-ASV® (option)
Noninvasive ventilation
High flow
Visualization of lung mechanics (Dynamic Lung)
Visualization of the patient’s ventilator dependence
Esophageal pressure measurement
Capnography
SpO2 monitoring
Recruitability assessment and lung recruitment (P/V Tool Pro)
Patient-ventilator synchronization (IntelliSync+)
CPR ventilation
Hamilton Connect Module
Remote connection to HAMILTON-H900 humidifier
Integrated IntelliCuff cuff pressure controller
Integrated pneumatic nebulizer
Integrated Aerogen nebulizer
Compatibility with Sedaconda ACD-S anesthetic delivery system
Dr. João Alves

Customer voices

One of the pearls of these ventilators is the interface. I think the interface of the HAMILTON-C6 has a completely new level of monitoring capabilities.

Dr. João Alves

Intensivist, Internal Medicine and Emergency Department since 2018
University Hospital Center Lisbon, Lisbon, Portugal

For your patients

ASV® - Adaptive Support Ventilation®. For adaptation around the clock

The ventilation mode ASV continuously adjusts the respiratory rate, tidal volume, and inspiratory time breath by breath depending on the patient’s lung mechanics and effort - 24 hours a day, from intubation to extubation.

INTELLiVENT®-ASV. For bedside assistance

The intelligent ventilation mode INTELLiVENT-ASV continuously controls the ventilation and oxygenation of the patient.

It sets the minute ventilation, PEEP, and Oxygen based on the targets set by the clinician, and on physiologic input from the patient.

IntelliSync®+. For patient-ventilator synchrony

Continuously analyzing waveform shapes hundreds of times per second allows IntelliSync+ to detect patient efforts and cycling immediately, and initiate inspiration and expiration in real-time.

IntelliSync+ applies to invasive and noninvasive ventilation, regardless of the ventilation mode.

P/V Tool®. For lung assessment and recruitment

You can use the P/V Tool to assess lung recruitability and determine the recruitment strategy.

Additionally, you can use it to perform a sustained inflation recruitment maneuver and measure the increase in lung volume.

Transpulmonary pressure monitoring. For inside insights

Transpulmonary pressure monitoring enables optimization of PEEP, tidal volume, and inspiratory pressure (Baedorf Kassis E, Loring SH, Talmor D. Should we titrate peep based on end-expiratory transpulmonary pressure?-yes. Ann Transl Med. 2018;6(19):390. doi:10.21037/atm.2018.06.35104​).

Use it in combination with the P/V Tool to assess lung recruitability and perform recruitment maneuvers.

Remote humidifier access. For your convenience

The unique ventilator connectivity option enables you to operate the HAMILTON-H900 humidifier (The HAMILTON-H900 is not approved for use during transport.e​) directly from the ventilator's display. You can access all the controls, monitoring parameters, and alarms, and adjust them as needed.

The humidifier can also select the humidification mode automatically (invasive, noninvasive, or high flow) based on the selected ventilation mode.

Integrated nebulizer. For additional treatments

The integrated pneumatic nebulizer is fully synchronized with the timing of inspiration and expiration.

An integrated, synchronized Aerogen nebulizer is available as an option (Not available in all marketsa​, Only available for HAMILTON-C6/G5/S1b​).

The delivery of a fine mist of drug aerosol particles helps you reverse bronchospasm, improve ventilation efficiency, and reduce hypercapnia (Dhand R. New frontiers in aerosol delivery during mechanical ventilation. Respir Care. 2004;49(6):666-677. 100​, Waldrep JC, Dhand R. Advanced nebulizer designs employing vibrating mesh/aperture plate technologies for aerosol generation. Curr Drug Deliv. 2008;5(2):114-119. doi:10.2174/156720108783954815101​).

Integrated IntelliCuff®. For controlled cuff pressure

IntelliCuff continuously measures and automatically maintains the user-set cuff pressure of an endotracheal or tracheostomy tube in real-time (IntelliCuff Auto mode not available in all markets.c​).

High flow nasal cannula therapy. For O2 fanatics

High flow nasal cannula therapy (Also known as high flow oxygen therapy. This terminology can be used interchangeably with high flow nasal cannula therapyf​) is available as an option on all our ventilators. In just a few steps, you can change the interface and use the same device and breathing circuit to accommodate your patient’s therapy needs.

Volumetric capnography. For CO2ntrol freaks

Proximal flow and CO2 measurement enables our ventilators to perform up-to-date volumetric capnography, which provides an important basis for the assessment of ventilation quality and metabolic activity.

Vent Status panel. For those who are ready to wean

The Vent Status panel displays six parameters related to the patient’s ventilator dependence, including oxygenation, CO2 elimination, and patient activity.

A floating indicator moving up and down within each column shows the current value for a given parameter.

Quick Wean. For the independent-minded

Quick Wean is a feature of the INTELLiVENT-ASV mode that provides continuous dynamic monitoring and control of patient conditions to evaluate the patient’s readiness for extubation.

Automated SBTs. For the spontaneous ones

The automated spontaneous breathing trials (SBTs) are part of the Quick Wean function in the INTELLiVENT-ASV mode and give you the option of conducting fully controlled SBTs.

Dynamic Lung panel. For visual people

The Dynamic Lung panel shows you a graphic real-time representation of the following important monitoring data:

  • Compliance and resistance
  • Patient triggering
  • SpO2
  • Pulse rate

Configurable loops and trends. For statisticians

The ventilator can display a dynamic loop based on a selected combination of monitored parameters. With the trend function, you can see trending information displayed for the monitoring parameters and time frame of your choice. 

The device continually stores the monitored parameters in its memory, even when in Standby.

Pulse oximetry. For SpO2 enthusiasts

The SpO2 option offers integrated noninvasive SpO2 measurement with the data displayed conveniently on your ventilator.

We also offer a comprehensive portfolio of SpO2 sensors.

High-performance noninvasive ventilation. For mask-wearers

The noninvasive ventilation modes deliver pressure-supported, flow-cycled spontaneous breaths (NIV and NIV-ST mode) and pressure-controlled, time-cycled mandatory breaths (NIV-ST).

Compared to ventilators using compressed air, our turbine-driven ventilators are capable of providing higher peak flow rates. This guarantees optimal performance even with large leaks.

nCPAP modes. For the little ones

With the nCPAP mode, the patient is supported with a continuous positive airway pressure. In our flow-controlled devices, the desired CPAP value is set via the respiratory gas flow. In order to compensate for any leakage that occurs, e.g. via the mouth or at the nose, the LeakAssist function can be activated. A predefined pressure can then be targeted with additional respiratory gas flow.

For you

Breathing circuit set, coaxial

Preassembled. And ready to use

Our preassembled breathing circuit sets include the essential consumables to operate the ventilator, conveniently packaged in one single bag.

All our essential consumables are specially developed for Hamilton Medical ventilators with guaranteed manufacturer quality.

Automation; Hand turns knob button clockwise

Less knob-turning. More adaptations to your patient

To manage ventilation you usually have to set multiple parameters, such as pressure, volume, inspiratory and expiratory triggers, cuff pressure, and more. And each time your patient's condition changes, you have to make one or even several readjustments.

To simplify this process and reduce the knob-turning, we have created a range of solutions:

Adaptive Support Ventilation (ASV) is a ventilation mode that provides continuous adaptation of respiratory rate, tidal volume, and inspiratory time, depending on the patient’s lung mechanics and effort. ASV has been shown to shorten the duration of mechanical ventilation in various patient populations with fewer manual settings (Kirakli C, Naz I, Ediboglu O, Tatar D, Budak A, Tellioglu E. A randomized controlled trial comparing the ventilation duration between adaptive support ventilation and pressure assist/control ventilation in medical patients in the ICU. Chest. 2015;147(6):1503-1509. doi:10.1378/chest.14-25991​, Tam MK, Wong WT, Gomersall CD, et al. A randomized controlled trial of 2 protocols for weaning cardiac surgical patients receiving adaptive support ventilation. J Crit Care. 2016;33:163-168. doi:10.1016/j.jcrc.2016.01.0182​, Zhu F, Gomersall CD, Ng SK, Underwood MJ, Lee A. A randomized controlled trial of adaptive support ventilation mode to wean patients after fast-track cardiac valvular surgery. Anesthesiology. 2015;122(4):832-840. doi:10.1097/ALN.00000000000005893​).

IntelliSync+ continuously analyzes waveform signals at least one hundred times per second. This enables IntelliSync+ to detect patient efforts immediately and to initiate inspiration and expiration in real-time, thus replacing conventional trigger settings for inspiration and expiration.

Conventional solutions for cuff pressure management require you to monitor and adjust cuff pressure by hand.

IntelliCuff secures your patient’s airway (Chenelle CT, Oto J, Sulemanji D, Fisher DF, Kacmarek RM. Evaluation of an automated endotracheal tube cuff controller during simulated mechanical ventilation. Respir Care. 2015;60(2):183-190. doi:10.4187/respcare.033878​) by continuously measuring and automatically maintaining the set cuff pressure for adult, pediatric, and neonatal patients.

Professional interacting with touch-screen

Help is near! On-screen troubleshooting

Whenever there is a problem, the ventilator alerts you using the alarm lamp, sound, and message bar.

The on-screen help offers you suggestions on how to resolve the alarm.

Patient in wheelchair with ventilator

Farewell ventilator! Tools to implement your weaning protocols

We want our ventilator to leave your patient’s side as quickly as possible. That is why we provide you with tools to help you implement your weaning protocol.

These include visual aids and ventilation modes designed to encourage spontaneous breathing.

Professionals looking into Hamilton Medical e-learnings

Get the hang of it! Learning paths and educational content

Our online Academy offers easy-to-follow learning paths to familiarize you with Hamilton Medical products and technologies as quickly as possible.

For the future

Illustration of a compass pointing towards the future

Constant evolution. Expanding your ventilator’s capabilities

We are constantly working on further evolving our products. New features are added and existing features improved to ensure you always have access to the latest ventilation technology over your ventilator’s lifetime.

How we keep your ventilator up-to-date
Hamilton ventilation family Hamilton ventilation family

Know one, know them all. A universal user interface

Whether it is in the ICU, in the MRI suite, or during transport, the user interface of all Hamilton Medical ventilators works in the same way.

Our Ventilation Cockpit integrates complex data into intuitive visualizations.

For the complete solution

Fully integrated accessories

We develop our accessories for the highest possible patient safety and ease of use in mind. Whenever possible, we integrate them with our ventilators to simplify operation of the complete ventilator system.

Our consumables

All Hamilton Medical Originals are designed for optimal performance with Hamilton Medical ventilators. To ensure maximum user satisfaction and patient safety, we strive for the highest quality and safety standards.
Photo of an employee

Talk to our experts. Let's discuss your needs

Our team of Ventilation Geeks is happy to assist you in choosing the perfect ventilator for your clinical care setting and helping you meet your therapy goals. Get a personalized price quote or schedule a callback for more information.

References

  1. 1. Kirakli C, Naz I, Ediboglu O, Tatar D, Budak A, Tellioglu E. A randomized controlled trial comparing the ventilation duration between adaptive support ventilation and pressure assist/control ventilation in medical patients in the ICU. Chest. 2015;147(6):1503-1509. doi:10.1378/chest.14-2599
  2. 2. Tam MK, Wong WT, Gomersall CD, et al. A randomized controlled trial of 2 protocols for weaning cardiac surgical patients receiving adaptive support ventilation. J Crit Care. 2016;33:163-168. doi:10.1016/j.jcrc.2016.01.018
  3. 3. Zhu F, Gomersall CD, Ng SK, Underwood MJ, Lee A. A randomized controlled trial of adaptive support ventilation mode to wean patients after fast-track cardiac valvular surgery. Anesthesiology. 2015;122(4):832-840. doi:10.1097/ALN.0000000000000589
  4. 8. Chenelle CT, Oto J, Sulemanji D, Fisher DF, Kacmarek RM. Evaluation of an automated endotracheal tube cuff controller during simulated mechanical ventilation. Respir Care. 2015;60(2):183-190. doi:10.4187/respcare.03387

 

  1. 100. Dhand R. New frontiers in aerosol delivery during mechanical ventilation. Respir Care. 2004;49(6):666-677.
  2. 101. Waldrep JC, Dhand R. Advanced nebulizer designs employing vibrating mesh/aperture plate technologies for aerosol generation. Curr Drug Deliv. 2008;5(2):114-119. doi:10.2174/156720108783954815
  3. 104. Baedorf Kassis E, Loring SH, Talmor D. Should we titrate peep based on end-expiratory transpulmonary pressure?-yes. Ann Transl Med. 2018;6(19):390. doi:10.21037/atm.2018.06.35

Footnotes

  • a. Not available in all markets
  • b. Only available for HAMILTON-C6/G5/S1
  • c. IntelliCuff Auto mode not available in all markets

 

  • e. The HAMILTON-H900 is not approved for use during transport
  • f. Also known as high flow oxygen therapy. This terminology can be used interchangeably with high flow nasal cannula therapy.

A randomized controlled trial comparing the ventilation duration between adaptive support ventilation and pressure assist/control ventilation in medical patients in the ICU.

Kirakli C, Naz I, Ediboglu O, Tatar D, Budak A, Tellioglu E. A randomized controlled trial comparing the ventilation duration between adaptive support ventilation and pressure assist/control ventilation in medical patients in the ICU. Chest. 2015;147(6):1503-1509. doi:10.1378/chest.14-2599



BACKGROUND

Adaptive support ventilation (ASV) is a closed loop mode of mechanical ventilation (MV) that provides a target minute ventilation by automatically adapting inspiratory pressure and respiratory rate with the minimum work of breathing on the part of the patient. The aim of this study was to determine the effect of ASV on total MV duration when compared with pressure assist/control ventilation.

METHODS

Adult medical patients intubated and mechanically ventilated for > 24 h in a medical ICU were randomized to either ASV or pressure assist/control ventilation. Sedation and medical treatment were standardized for each group. Primary outcome was the total MV duration. Secondary outcomes were the weaning duration, number of manual settings of the ventilator, and weaning success rates.

RESULTS

Two hundred twenty-nine patients were included. Median MV duration until weaning, weaning duration, and total MV duration were significantly shorter in the ASV group (67 [43-94] h vs 92 [61-165] h, P = .003; 2 [2-2] h vs 2 [2-80] h, P = .001; and 4 [2-6] days vs 4 [3-9] days, P = .016, respectively). Patients in the ASV group required fewer total number of manual settings on the ventilator to reach the desired pH and Paco2 levels (2 [1-2] vs 3 [2-5], P < .001). The number of patients extubated successfully on the first attempt was significantly higher in the ASV group (P = .001). Weaning success and mortality at day 28 were comparable between the two groups.

CONCLUSIONS

In medical patients in the ICU, ASV may shorten the duration of weaning and total MV duration with a fewer number of manual ventilator settings.

TRIAL REGISTRY

ClinicalTrials.gov; No.: NCT01472302; URL: www.clinicaltrials.gov.

A randomized controlled trial of 2 protocols for weaning cardiac surgical patients receiving adaptive support ventilation.

Tam MK, Wong WT, Gomersall CD, et al. A randomized controlled trial of 2 protocols for weaning cardiac surgical patients receiving adaptive support ventilation. J Crit Care. 2016;33:163-168. doi:10.1016/j.jcrc.2016.01.018



PURPOSE

This study aims to compare the effectiveness of weaning with adaptive support ventilation (ASV) incorporating progressively reduced or constant target minute ventilation in the protocol in postoperative care after cardiac surgery.

MATERIAL AND METHODS

A randomized controlled unblinded study of 52 patients after elective coronary artery bypass surgery was carried out to determine whether a protocol incorporating a decremental target minute ventilation (DTMV) results in more rapid weaning of patients ventilated in ASV mode compared to a protocol incorporating a constant target minute ventilation.

RESULTS

Median duration of mechanical ventilation (145 vs 309 minutes; P = .001) and intubation (225 vs 423 minutes; P = .005) were significantly shorter in the DTMV group. There was no difference in adverse effects (42% vs 46%) or mortality (0% vs 0%) between the 2 groups.

CONCLUSIONS

Use of a DTMV protocol for postoperative ventilation of cardiac surgical patients in ASV mode results in a shorter duration of ventilation and intubation without evidence of increased risk of adverse effects.

A randomized controlled trial of adaptive support ventilation mode to wean patients after fast-track cardiac valvular surgery.

Zhu F, Gomersall CD, Ng SK, Underwood MJ, Lee A. A randomized controlled trial of adaptive support ventilation mode to wean patients after fast-track cardiac valvular surgery. Anesthesiology. 2015;122(4):832-840. doi:10.1097/ALN.0000000000000589



BACKGROUND

Adaptive support ventilation can speed weaning after coronary artery surgery compared with protocolized weaning using other modes. There are no data to support this mode of weaning after cardiac valvular surgery. Furthermore, control group weaning times have been long, suggesting that the results may reflect control group protocols that delay weaning rather than a real advantage of adaptive support ventilation.

METHODS

Randomized (computer-generated sequence and sealed opaque envelopes), parallel-arm, unblinded trial of adaptive support ventilation versus physician-directed weaning after adult fast-track cardiac valvular surgery. The primary outcome was duration of mechanical ventilation. Patients aged 18 to 80 yr without significant renal, liver, or lung disease or severe impairment of left ventricular function undergoing uncomplicated elective valve surgery were eligible. Care was standardized, except postoperative ventilation. In the adaptive support ventilation group, target minute ventilation and inspired oxygen concentration were adjusted according to blood gases. A spontaneous breathing trial was carried out when the total inspiratory pressure of 15 cm H2O or less with positive end-expiratory pressure of 5 cm H2O. In the control group, the duty physician made all ventilatory decisions.

RESULTS

Median duration of ventilation was statistically significantly shorter (P = 0.013) in the adaptive support ventilation group (205 [141 to 295] min, n = 30) than that in controls (342 [214 to 491] min, n = 31). Manual ventilator changes and alarms were less common in the adaptive support ventilation group, and arterial blood gas estimations were more common.

CONCLUSION

Adaptive support ventilation reduces ventilation time by more than 2 h in patients who have undergone fast-track cardiac valvular surgery while reducing the number of manual ventilator changes and alarms.

Evaluation of an automated endotracheal tube cuff controller during simulated mechanical ventilation.

Chenelle CT, Oto J, Sulemanji D, Fisher DF, Kacmarek RM. Evaluation of an automated endotracheal tube cuff controller during simulated mechanical ventilation. Respir Care. 2015;60(2):183-190. doi:10.4187/respcare.03387



BACKGROUND

Maintaining endotracheal tube cuff pressure within a narrow range is an important factor in patient care. The goal of this study was to evaluate the IntelliCuff against the manual technique for maintaining cuff pressure during simulated mechanical ventilation with and without movement.

METHODS

The IntelliCuff was compared to the manual technique of a manometer and syringe. Two independent studies were performed during mechanical ventilation: part 1, a 2-h trial incorporating continuous mannikin head movement; and part 2, an 8-h trial using a stationary trachea model. We set cuff pressure to 25 cm H2O, PEEP to 10 cm H2O, and peak inspiratory pressures to 20, 30, and 40 cm H2O. Clinical importance was defined as both statistically significant (P<.05) and clinically significant (pressure change [Δ]>10%).

RESULTS

In part 1, the change in cuff pressure from before to after ventilation was clinically important for the manual technique (P<.001, Δ=-39.6%) but not for the IntelliCuff (P=.02, Δ=3.5%). In part 2, the change in cuff pressure from before to after ventilation was clinically important for the manual technique (P=.004, Δ=-14.39%) but not for the IntelliCuff (P=.20, Δ=5.65%).

CONCLUSIONS

There was a clinically important drop in manually set cuff pressure during simulated mechanical ventilation in a stationary model and an even larger drop with movement, but this was significantly reduced by the IntelliCuff in both scenarios. Additionally, we observed that cuff pressure varied directly with inspiratory airway pressure for both techniques, leading to elevated average cuff pressures.

New frontiers in aerosol delivery during mechanical ventilation.

Dhand R. New frontiers in aerosol delivery during mechanical ventilation. Respir Care. 2004;49(6):666-677.

The scientific basis for inhalation therapy in mechanically-ventilated patients is now firmly established. A variety of new devices that deliver drugs to the lung with high efficiency could be employed for drug delivery during mechanical ventilation. Encapsulation of drugs within liposomes could increase the amount of drug delivered, prolong the effect of a dose, and minimize adverse effects. With improved inhalation devices and surfactant formulations, inhaled surfactant could be employed for several indications in mechanically-ventilated patients. Research is unraveling the causes of some disorders that have been poorly understood, and our improved understanding of the causal mechanisms of various respiratory disorders will provide new applications for inhaled therapies.

Advanced nebulizer designs employing vibrating mesh/aperture plate technologies for aerosol generation.

Waldrep JC, Dhand R. Advanced nebulizer designs employing vibrating mesh/aperture plate technologies for aerosol generation. Curr Drug Deliv. 2008;5(2):114-119. doi:10.2174/156720108783954815

Recent technological advances and improved nebulizer designs have overcome many limitations of jet nebulizers. Newer devices employ a vibrating mesh or aperture plate (VM/AP) for the generation of therapeutic aerosols with consistent, increased efficiency, predominant aerosol fine particle fractions, low residuals, and the ability to nebulize even microliter volumes. These enhancements are achieved through several different design features and include improvements that promote patient compliance, such as compact design, portability, shorter treatment durations, and quiet operation. Current VM/AP devices in clinical use are the Omron MicroAir, the Nektar Aeroneb, and the Pari eFlow. However, some devices are only approved for use with specific medications. Development of "smart nebulizers" such as the Respironics I-neb couple VM technologies with coordinated delivery and optimized inhalation patterns to enhance inhaled drug delivery of specialized, expensive formulations. Ongoing development of advanced aerosol technologies should improve clinical outcomes and continue to expand therapeutic options as newer inhaled drugs become available.

Should we titrate peep based on end-expiratory transpulmonary pressure?-yes.

Baedorf Kassis E, Loring SH, Talmor D. Should we titrate peep based on end-expiratory transpulmonary pressure?-yes. Ann Transl Med. 2018;6(19):390. doi:10.21037/atm.2018.06.35

Ventilator management of patients with acute respiratory distress syndrome (ARDS) has been characterized by implementation of basic physiology principles by minimizing harmful distending pressures and preventing lung derecruitment. Such strategies have led to significant improvements in outcomes. Positive end expiratory pressure (PEEP) is an important part of a lung protective strategy but there is no standardized method to set PEEP level. With widely varying types of lung injury, body habitus and pulmonary mechanics, the use of esophageal manometry has become important for personalization and optimization of mechanical ventilation in patients with ARDS. Esophageal manometry estimates pleural pressures, and can be used to differentiate the chest wall and lung (transpulmonary) contributions to the total respiratory system mechanics. Elevated pleural pressures may result in negative transpulmonary pressures at end expiration, leading to lung collapse. Measuring the esophageal pressures and adjusting PEEP to make transpulmonary pressures positive can decrease atelectasis, derecruitment of lung, and cyclical opening and closing of airways and alveoli, thus optimizing lung mechanics and oxygenation. Although there is some spatial and positional artifact, esophageal pressures in numerous animal and human studies in healthy, obese and critically ill patients appear to be a good estimate for the "effective" pleural pressure. Multiple studies have illustrated the benefit of using esophageal pressures to titrate PEEP in patients with obesity and with ARDS. Esophageal pressure monitoring provides a window into the unique physiology of a patient and helps improve clinical decision making at the bedside.