Technologies

IntelliSync®+. Keeping an eye on patient‑ventilator synchrony

Human eye that captures and processes digital data

How to detect asynchronies? A digital eye

The well‑trained eye of a ventilation expert is capable of detecting asynchronies by analyzing the shapes of the flow and pressure waveforms.

However, the patient’s condition can change from breath to breath and the expert cannot always be at the bedside.

That is where IntelliSync+ takes over. This technology mimics the expert‘s eye to identify signs of patient effort (trigger) or relaxation (cycling) on the waveform.

InelliSync before and after

How does it work? IntelliSync+ principles

IntelliSync+ continuously analyzes waveform signals at least one hundred times per second. This enables IntelliSync+ to detect patient efforts immediately and to initiate inspiration and expiration in real time, thus replacing conventional trigger settings for inspiration and expiration.

For maximum flexibility, you can choose to activate IntelliSync+ for either the inspiratory trigger or the expiratory trigger, or both.

Graphical illustration: patient dossier with loupe

Are asynchronies really an issue? A look at the evidence

A high number of major patient‑ventilator asynchronies occur in around 25% of all mechanically ventilated patients (Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32(10):1515-1522. doi:10.1007/s00134-006-0301-81​). They are associated with increased work of breathing (Tassaux D, Gainnier M, Battisti A, Jolliet P. Impact of expiratory trigger setting on delayed cycling and inspiratory muscle workload. Am J Respir Crit Care Med. 2005;172(10):1283-1289. doi:10.1164/rccm.200407-880OC2​), prolonged ventilation time (Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32(10):1515-1522. doi:10.1007/s00134-006-0301-81​), and higher mortality (Blanch L, Villagra A, Sales B, et al. Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med. 2015;41(4):633-641. doi:10.1007/s00134-015-3692-63​).

Analyzing waveform shapes is a reliable, accurate, and reproducible method for assessing patient‑ventilator interaction. Automation of this method may allow continuous monitoring of ventilated patients and/or improved breath‑triggering and cycling (Mojoli F, Iotti GA, Torriglia F, et al. In vivo calibration of esophageal pressure in the mechanically ventilated patient makes measurements reliable. Crit Care. 2016;20:98. Published 2016 Apr 11. doi:10.1186/s13054-016-1278-54​).

Automated cycling off for improved patient ventilator synchrony

Mojoli F, Orlando A, Bianchi IM, et al.

A recent study showed that automated control of ventilator cycling off based on real time analysis of waveforms provided a reliable means of improving synchronization in mechanically ventilated patients.

Ventilator Dispaly Ventilator Dispaly

How do you use it? IntelliSync+ setup and operation

IntelliSync+ is a completely noninvasive method that does not require any additional hardware or accessories. Simply activate the option on your ventilator to use it in invasive or noninvasive ventilation modes on adult and pediatric patients.

As IntelliSync+ can also be combined with conventional triggers, you can choose to use IntelliSync+ either during inspiration, expiration, or both.

Graphic illustration: student holding certificate in her hand

Good to know! IntelliSync+ training resources

Asynchronies reference card

Learn to spot common asynchronies! Free reference card

Our asynchrony reference card gives you an overview of the most common asynchrony types, their causes, and how to detect them.

Availability

IntelliSync+ is available as an option on the HAMILTON‑C6 and HAMILTON‑G5, and is a standard feature on the HAMILTON‑S1.

We have detected that you are visiting our website from United States.
We offer a separate version of the website for your country (United States).

Switch to United States

Patient‑ventilator asynchrony during assisted mechanical ventilation.

Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient‑ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32(10):1515‑1522. doi:10.1007/s00134‑006‑0301‑8



OBJECTIVE

The incidence, pathophysiology, and consequences of patient‑ventilator asynchrony are poorly known. We assessed the incidence of patient‑ventilator asynchrony during assisted mechanical ventilation and we identified associated factors.

METHODS

Sixty-two consecutive patients requiring mechanical ventilation for more than 24 h were included prospectively as soon as they triggered all ventilator breaths: assist-control ventilation (ACV) in 11 and pressure-support ventilation (PSV) in 51.

MEASUREMENTS

Gross asynchrony detected visually on 30-min recordings of flow and airway pressure was quantified using an asynchrony index.

RESULTS

Fifteen patients (24%) had an asynchrony index greater than 10% of respiratory efforts. Ineffective triggering and double-triggering were the two main asynchrony patterns. Asynchrony existed during both ACV and PSV, with a median number of episodes per patient of 72 (range 13-215) vs. 16 (4-47) in 30 min, respectively (p=0.04). Double-triggering was more common during ACV than during PSV, but no difference was found for ineffective triggering. Ineffective triggering was associated with a less sensitive inspiratory trigger, higher level of pressure support (15 cmH(2)O, IQR 12-16, vs. 17.5, IQR 16-20), higher tidal volume, and higher pH. A high incidence of asynchrony was also associated with a longer duration of mechanical ventilation (7.5 days, IQR 3-20, vs. 25.5, IQR 9.5-42.5).

CONCLUSIONS

One-fourth of patients exhibit a high incidence of asynchrony during assisted ventilation. Such a high incidence is associated with a prolonged duration of mechanical ventilation. Patients with frequent ineffective triggering may receive excessive levels of ventilatory support.

Impact of expiratory trigger setting on delayed cycling and inspiratory muscle workload.

Tassaux D, Gainnier M, Battisti A, Jolliet P. Impact of expiratory trigger setting on delayed cycling and inspiratory muscle workload. Am J Respir Crit Care Med. 2005;172(10):1283‑1289. doi:10.1164/rccm.200407‑880OC



RATIONALE

During pressure‑support ventilation, the ventilator cycles into expiration when inspiratory flow decreases to a given percentage of peak inspiratory flow ("expiratory trigger"). In obstructive disease, the slower rise and decrease of inspiratory flow entails delayed cycling, an increase in intrinsic positive end‑expiratory pressure, and nontriggering breaths.

OBJECTIVES

We hypothesized that setting expiratory trigger at a higher than usual percentage of peak inspiratory flow would attenuate the adverse effects of delayed cycling.

METHODS

Ten intubated patients with obstructive disease undergoing pressure support were studied at expiratory trigger settings of 10, 25, 50, and 70% of peak inspiratory flow.

MEASUREMENTS

Continuous recording of diaphragmatic EMG activity with surface electrodes, and esophageal and gastric pressures with a dual-balloon nasogastric tube.

MAIN RESULTS

Compared with expiratory trigger 10, expiratory trigger 70 reduced the magnitude of delayed cycling (0.25 +/- 0.18 vs. 1.26 +/- 0.72 s, p < 0.05), intrinsic positive end-expiratory pressure (4.8 +/- 1.9 vs. 6.5 +/- 2.2 cm H(2)O, p < 0.05), nontriggering breaths (2 +/- 3 vs. 9 +/- 5 breaths/min, p < 0.05), and triggering pressure-time product (0.9 +/- 0.8 vs. 2.1 +/- 0.7 cm H2O . s, p < 0.05).

CONCLUSIONS

Setting expiratory trigger at a higher percentage of peak inspiratory flow in patients with obstructive disease during pressure support improves patient-ventilator synchrony and reduces inspiratory muscle effort. Further studies should explore whether these effects can influence patient outcome.

Asynchronies during mechanical ventilation are associated with mortality.

Blanch L, Villagra A, Sales B, et al. Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med. 2015;41(4):633‑641. doi:10.1007/s00134‑015‑3692‑6



PURPOSE

This study aimed to assess the prevalence and time course of asynchronies during mechanical ventilation (MV).

METHODS

Prospective, noninterventional observational study of 50 patients admitted to intensive care unit (ICU) beds equipped with Better Care™ software throughout MV. The software distinguished ventilatory modes and detected ineffective inspiratory efforts during expiration (IEE), double‑triggering, aborted inspirations, and short and prolonged cycling to compute the asynchrony index (AI) for each hour. We analyzed 7,027 h of MV comprising 8,731,981 breaths.

RESULTS

Asynchronies were detected in all patients and in all ventilator modes. The median AI was 3.41 % [IQR 1.95-5.77]; the most common asynchrony overall and in each mode was IEE [2.38 % (IQR 1.36-3.61)]. Asynchronies were less frequent from 12 pm to 6 am [1.69 % (IQR 0.47-4.78)]. In the hours where more than 90 % of breaths were machine-triggered, the median AI decreased, but asynchronies were still present. When we compared patients with AI > 10 vs AI ≤ 10 %, we found similar reintubation and tracheostomy rates but higher ICU and hospital mortality and a trend toward longer duration of MV in patients with an AI above the cutoff.

CONCLUSIONS

Asynchronies are common throughout MV, occurring in all MV modes, and more frequently during the daytime. Further studies should determine whether asynchronies are a marker for or a cause of mortality.

In vivo calibration of esophageal pressure in the mechanically ventilated patient makes measurements reliable.

Mojoli F, Iotti GA, Torriglia F, et al. In vivo calibration of esophageal pressure in the mechanically ventilated patient makes measurements reliable. Crit Care. 2016;20:98. Published 2016 Apr 11. doi:10.1186/s13054‑016‑1278‑5

In screening programmes it is important to assess a preliminary effectiveness of the screening method as soon as possible in order to forecast survival figures. In March 1981 a controlled single‑view mammographic screening trial for breast cancer was started in the south of Stockholm. The population invited for screening mammography consisted of 40,000 women aged 40‑64 years, and 20,000 women served as a well‑defined control group. The main aim of the trial was to determine whether repeated mammographic screening could reduce the mortality in the study population (SP) compared to the control population (CP). The cumulative number of advanced mammary carcinomas in the screening and the control populations from the first five years of screening have shown a tendency towards more favourable stages in the screened population aged 40‑64 years. A breakdown by age suggests an effect in age group 50‑59 years, but not yet in age groups 40‑49 and 60‑64 years. When comparing the rates of stage II+ cancer, an increased number is found in the study group. As the total rate of breast cancer is higher in SP than in CP, there ought to be a concealed group of stage II+ cancers in the CP which makes the comparison biased. A new approach has been designed, where an estimation of the 'hidden' number of stage II+ cancers in CP is added to the clinically detected cases, and in this respect a comparison has shown a decrease in the cumulative number of advanced cancers in the SP in relation to the CP (p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)