Prodotti

HAMILTON‑C1: Piccola taglia, grandi prestazioni

HAMILTON-C1

Adatto a ogni situazione: sempre pronto per ogni esigenza

  • Terapia intensiva, anche pediatrica e neonatale
  • Pronto soccorso
  • Terapia sub‑intensiva
  • Assistenza per acuti lungodegenti
  • Spostamenti all'interno dell'ospedale
HAMILTON-C1
HAMILTON-C1

Adatto a ogni situazione: sempre pronto per ogni esigenza

  • Terapia intensiva, anche pediatrica e neonatale
  • Pronto soccorso
  • Terapia sub‑intensiva
  • Assistenza per acuti lungodegenti
  • Spostamenti all'interno dell'ospedale
HAMILTON-C1

Supporto dal minimo al massimo: per scegliere la ventilazione ideale

  • Terapia ad alto flusso con cannula nasale
  • Ventilazione non invasiva
  • Modalità di ventilazione a volume controllato e a pressione controllata
  • Ventilazione adattiva con ASV® e INTELLiVENT®‑ASV
HAMILTON-C1

Poter vedere le condizioni dei polmoni vale più di 1000 parole

Il pannello PolmDin visualizza compliance polmonare, resistenza delle vie aeree e trigger del paziente in sincronia con i respiri effettivi.

HAMILTON-C1

Comandi e stato dell'umidificatore... sul display del ventilatore

L'umidificatore HAMILTON‑H900 può essere azionato comodamente dal display del ventilatore. L'HAMILTON‑H900 si sincronizza con il ventilatore e seleziona automaticamente la modalità di umidificazione in base alla modalità di ventilazione.

HAMILTON-C1

Indipendente e fiero di esserlo: a batteria e senza necessità di aria compressa

  • Turbina ad alte prestazioni
  • Quattro ore di autonomia a batteria
  • Supporto porta‑bombole di ossigeno
HAMILTON-C1
HAMILTON-C1
Paziente che parla al telefono utilizzando l'opzione per valvola fonatoria.

Spargete la voce: consente ai pazienti di parlare

L'opzione per l'uso con valvola fonatoria restituisce la voce ai pazienti tracheostomizzati e permette loro di deglutire anche mentre il ventilatore fornisce il supporto respiratorio.

Le funzioni di monitoraggio, trigger e gestione degli allarmi sul ventilatore sono modificate per essere compatibili con l'uso di una valvola fonatoria nelle modalità a pressione controllata (PCV+, SPONT, PSIMV+).

Illustrazione: personale infermieristico che aiuta i pazienti intubati a camminare.

Prima è, meglio è: per una mobilizzazione precoce

Grazie alla turbina ad alte prestazioni, alla batteria, all'ingombro ridotto e alle modalità di ventilazione all'avanguardia, l'HAMILTON‑C1 è anche in grado di accompagnare il paziente nei primi passi una volta sceso dal letto.

Per saperne di più:
ecco il modello 3D

Permette di vedere l'HAMILTON‑C1 da ogni angolazione e per avere maggiori informazioni basta fare clic sui punti di interesse.

In breve

  • Standard
  • Opzione
  • Non disponibile
Gruppi di pazienti Adulto/Ped., Neonatale
Dimensioni (L × P × A) 310 × 210 × 245 mm (unità di ventilazione)
630 × 630 × 1380 mm (compreso il carrello)
Peso 4,9 kg
16,9 kg con carrello
Dimensioni e risoluzione del monitor Diagonale da 8,4" (214 mm)
640 × 480 pixel
Monitor staccabile
Tempo di funzionamento della batteria 4 ora con una batteria
Batteria sostituibile a caldo
Alimentazione aria Turbina integrata
Connettore O2 DISS (CGA 1240) o NIST
Connettività CO2/Chiamata infermiere/COM1, CO2/SpO2/COM1, CO2/SpO2/Umidificatore e COM1, porta USB, porta Ethernet RJ‑45
Volume 43 dB (normale utilizzo)
A volume controllato, a flusso controllato
A target di volume, a pressione adattiva controllata
Ventilazione intelligente ASV®, INTELLiVENT®‑ASV® (opzione)
Ventilazione non invasiva
Flusso alto
Visualizzazione della meccanica polmonare (PolmDin)
Visualizzazione della dipendenza del paziente dal ventilatore
Misurazione della pressione esofagea
Capnografia
Monitoraggio della SpO2
Valutazione e reclutamento polmonari (P/V Tool Pro)
Sincronizzazione paziente‑ventilatore (IntelliSync+)
Ventilazione per RCP
Modulo Hamilton Connect
Connessione da remoto all’umidificatore HAMILTON‑H900
Controller integrato della pressione di cuffia IntelliCuff
Nebulizzatore pneumatico integrato
Nebulizzatore Aerogen integrato
Compatibilità con il sistema di anestesia Sedaconda ACD‑S
Ricky Williams

Cosa dicono i clienti

Il fatto di poter utilizzare l'HAMILTON‑C1 anche per la CPAP e il trasporto lo rende un investimento conveniente per la struttura e riduce il carico di lavoro del personale.

Ricky Williams

RRT, Direttore reparto di Pneumologia
BridgePoint Continuing Care Hospital National Harborside, Washington DC, USA

Per i pazienti

Le soluzioni per la ventilazione intelligente a colpo d'occhio

ASV® ‑ Adaptive Support Ventilation®: Adattamento giorno e notte

La modalità di ventilazione ASV regola costantemente, respiro per respiro, la frequenza respiratoria, il volume corrente e il tempo inspiratorio in base alla meccanica polmonare e allo sforzo del paziente: 24 ore su 24, dall'intubazione all'estubazione.

INTELLiVENT®‑ASV: Un assistente al posto letto

La modalità di ventilazione intelligente INTELLiVENT‑ASV controlla costantemente la ventilazione e l'ossigenazione del paziente.

Regola ventilazione minuto, PEEP e Ossigeno basandosi sui target impostati dall'operatore e sui dati fisiologici del paziente.

Accedere all'umidificatore da remoto: una soluzione pratica

Questa opzione di connettività del ventilatore consente di utilizzare direttamente dal display del ventilatore anche l'umidificatore HAMILTON‑H900 ( L'HAMILTON‑H900 non è approvato per l'uso durante il trasportoe). È possibile accedere a tutti i comandi, parametri di monitoraggio e allarmi, oltre a regolarli in base alle esigenze.

È inoltre possibile far sì che l'umidificatore selezioni automaticamente la modalità di umidificazione (invasiva, non invasiva e ad alto flusso) in base alla modalità di ventilazione selezionata.

Nebulizzatore integrato: utile per i trattamenti aggiuntivi

Il nebulizzatore pneumatico integrato è perfettamente sincronizzato con i tempi di inspirazione ed espirazione.

È disponibile come opzione un nebulizzatore integrato e sincronizzato Aerogen ( Non disponibile in tutti i mercatia, Disponibile solo per i ventilatori HAMILTON‑C6/G5/S1b).

L'erogazione di farmaci nebulizzati a creare un aerosol contribuisce a contrastare il broncospasmo, ad aumentare l'efficienza della ventilazione e a ridurre l'ipercapnia (Dhand R. New frontiers in aerosol delivery during mechanical ventilation. Respir Care. 2004;49(6):666‑677. 100, Waldrep JC, Dhand R. Advanced nebulizer designs employing vibrating mesh/aperture plate technologies for aerosol generation. Curr Drug Deliv. 2008;5(2):114‑119. doi:10.2174/156720108783954815101).

Terapia ad alto flusso con cannula nasale: per chi non può rinunciare all'O2

La terapia ad alto flusso con cannula nasale ( Nota anche come "terapia con ossigeno ad alto flusso". Questo termine e il termine "terapia ad alto flusso con cannula nasale" sono equivalenti.f) è disponibile come opzione su tutti i nostri ventilatori. In solo pochi passaggi è possibile cambiare l'interfaccia e utilizzare lo stesso dispositivo e circuito paziente per soddisfare ogni esigenza terapeutica.

Ventilazione per RCP: per salvare vite umane

La ventilazione per RCP adatta le impostazioni del ventilatore durante la rianimazione. Supporta il flusso di lavoro della RCP consentendo di accedere rapidamente a impostazioni preconfigurabili, regolazioni adeguate di allarmi e trigger e visualizzazione di un timer RCP.

Sullo schermo vengono inoltre visualizzati i parametri di monitoraggio principali e le curve rilevanti per la ventilazione per RCP.

Valvola fonatoria: per i più chiacchieroni

L'opzione per l'uso con valvola fonatoria restituisce la voce ai pazienti tracheostomizzati e permette loro di deglutire anche mentre il supporto respiratorio è attivo.

Le funzioni di monitoraggio, trigger e gestione degli allarmi sul ventilatore sono modificate per essere compatibili con l'uso di una valvola fonatoria nelle modalità a pressione controllata (PCV+, SPONT, PSIMV+).

Capnografia volumetrica: per i CO2ntrol freak

La misurazione della CO2 e del flusso prossimale consente ai nostri ventilatori di effettuare la capnografia volumetrica con tecniche moderne: una base importante per la valutazione della qualità della ventilazione e dell'attività metabolica.

Pannello StatoVent: pronti per lo svezzamento?

Il pannello StatoVent visualizza sei parametri relativi alla dipendenza del paziente dal ventilatore, tra cui l'ossigenazione, l'eliminazione della CO2 e l'attività del paziente.

Un cursore fluttuante si muove in su e in giù all'interno di ogni colonna mostrando il valore attuale di un dato parametro.

Svezzamento veloce: per chi ha sete di indipendenza

Lo "Svezzamento veloce" è una funzione della modalità INTELLiVENT‑ASV che consente il monitoraggio dinamico continuo e il controllo delle condizioni del paziente per valutare se quest'ultimo è potenzialmente pronto per l'estubazione.

Pannello PolmDin: per vedere con i propri occhi

Il pannello PolmDin mostra all'operatore una rappresentazione grafica in tempo reale di questi importanti dati di monitoraggio:

  • Compliance e resistenza
  • Trigger del paziente
  • SpO2
  • Frequenza del polso

Loop e trend configurabili: per chi ama la statistica

Il ventilatore può visualizzare un loop dinamico basato su una combinazione selezionata di parametri monitorati. Grazie alla funzione di trend, è possibile visualizzare sullo schermo le tendenze dei dati relativi ai parametri di monitoraggio e all'intervallo temporale desiderati. 

Il dispositivo registra costantemente in memoria i dati sui parametri monitorati, anche quando è in Standby.

Saturimetria: la SpO2 non ha più segreti

L'opzione SpO2 permette la misurazione integrata non invasiva della SpO2 con comoda visualizzazione dei dati direttamente sul ventilatore.

Mettiamo inoltre a disposizione un'ampia gamma di sensori di SpO2.

Ventilazione non invasiva ad alte prestazioni: dietro la maschera

Le modalità di ventilazione non invasiva erogano respiri spontanei a supporto di pressione e con ciclaggio a flusso (modalità NIV e NIV‑ST) e respiri meccanici a pressione controllata e con ciclaggio a tempo (NIV‑ST).

Rispetto ai ventilatori che utilizzano l'aria compressa, i nostri ventilatori a turbina sono in grado di fornire flussi di picco maggiori. In questo modo le prestazioni sono ottimali anche in presenza di perdite consistenti.

Modalità nCPAP: per i più piccoli

Le modalità per nCPAP sono progettate in modo tale che il medico debba soltanto inserire la pressione di CPAP desiderata. Il flusso viene regolato di conseguenza in base alle condizioni del paziente e alle potenziali perdite. In questo modo è possibile evitare pressioni di picco non previste, garantire una compensazione delle perdite efficiente e contribuire a ridurre il consumo di ossigeno. Le regolazioni del flusso avvengono con estrema rapidità grazie all'elevata sensibilità delle misurazioni di pressione.

Per i medici

Set circuito paziente, coassiale

Preassemblati e pronti per l'uso

I nostri set circuito paziente preassemblati comprendono tutti i prodotti di consumo essenziali per utilizzare il ventilatore, riuniti comodamente in una sola confezione.

Tutti i nostri prodotti di consumo sono sviluppati appositamente per i ventilatori Hamilton Medical e garantiscono gli standard di qualità del produttore.

Automazione; mano che ruota una manopola in senso orario

Meno tempo a girare manopole, più regolazioni basate sul paziente

Per gestire la ventilazione occorre solitamente impostare diversi parametri, come pressione, volume, trigger inspiratorio ed espiratorio, pressione di cuffia e molti altri. Ogni volta che le condizioni del paziente cambiano, è necessario eseguire una o più regolazioni.

Abbiamo creato una serie di soluzioni proprio per semplificare questo processo e ridurre il tempo passato a girare manopole:

L'Adaptive Support Ventilation (ASV) è una modalità di ventilazione che adatta costantemente frequenza respiratoria, volume corrente e tempo inspiratorio sulla base della meccanica polmonare e dello sforzo del paziente. È stato osservato che l'ASV riduce la durata della ventilazione meccanica in diverse popolazioni di pazienti, richiedendo un minor numero di impostazioni manuali (Kirakli C, Naz I, Ediboglu O, Tatar D, Budak A, Tellioglu E. A randomized controlled trial comparing the ventilation duration between adaptive support ventilation and pressure assist/control ventilation in medical patients in the ICU. Chest. 2015;147(6):1503‑1509. doi:10.1378/chest.14‑25991, Tam MK, Wong WT, Gomersall CD, et al. A randomized controlled trial of 2 protocols for weaning cardiac surgical patients receiving adaptive support ventilation. J Crit Care. 2016;33:163‑168. doi:10.1016/j.jcrc.2016.01.0182, Zhu F, Gomersall CD, Ng SK, Underwood MJ, Lee A. A randomized controlled trial of adaptive support ventilation mode to wean patients after fast‑track cardiac valvular surgery. Anesthesiology. 2015;122(4):832‑840. doi:10.1097/ALN.00000000000005893).

La nostra modalità di ventilazione intelligente INTELLiVENT‑ASV permette al medico di fare molto più che passare il tempo a girare manopole, trasformandolo da semplice operatore a supervisore, riduce il numero di interazioni manuali con il ventilatore (Beijers AJ, Roos AN, Bindels AJ. Fully automated closed-loop ventilation is safe and effective in post-cardiac surgery patients. Intensive Care Med. 2014;40(5):752-753. doi:10.1007/s00134-014-3234-74, Bialais E, Wittebole X, Vignaux L, et al. Closed-loop ventilation mode (IntelliVent®-ASV) in intensive care unit: a randomized trial. Minerva Anestesiol. 2016;82(6):657-668. 5, Fot EV, Izotova NN, Yudina AS, Smetkin AA, Kuzkov VV, Kirov MY. Automated Weaning from Mechanical Ventilation after Off-Pump Coronary Artery Bypass Grafting. Front Med (Lausanne). 2017;4:31. Pubblicato il 21 marzo 2017. doi:10.3389/fmed.2017.000316), e garantisce ai pazienti una ventilazione personalizzata con protezione polmonare (Bialais E, Wittebole X, Vignaux L, et al. Closed-loop ventilation mode (IntelliVent®-ASV) in intensive care unit: a randomized trial. Minerva Anestesiol. 2016;82(6):657-668. 5, Fot EV, Izotova NN, Yudina AS, Smetkin AA, Kuzkov VV, Kirov MY. Automated Weaning from Mechanical Ventilation after Off-Pump Coronary Artery Bypass Grafting. Front Med (Lausanne). 2017;4:31. Pubblicato il 21 marzo 2017. doi:10.3389/fmed.2017.000316, Arnal JM, Saoli M, Garnero A. Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT-ASV in passive, mechanically ventilated ICU patients. Heart Lung. 2020;49(4):427-434. doi:10.1016/j.hrtlng.2019.11.0017), dall'intubazione all'estubazione.

Le soluzioni convenzionali per la gestione della pressione di cuffia richiedono di monitorarla e regolarla manualmente.

IntelliCuff protegge le vie aeree del paziente (Chenelle CT, Oto J, Sulemanji D, Fisher DF, Kacmarek RM. Evaluation of an automated endotracheal tube cuff controller during simulated mechanical ventilation. Respir Care. 2015;60(2):183‑190. doi:10.4187/respcare.033878) misurando costantemente la pressione di cuffia ed eseguendo automaticamente le regolazioni necessarie per mantenere quella impostata per pazienti adulti, pediatrici e neonatali.

Professionista che interagisce su un touch screen

Un aiuto a portata di mano: risoluzione dei problemi su schermo

Quando c'è un problema, il ventilatore avvisa l'utente tramite la lampada di allarme, i segnali acustici e la barra dei messaggi.

La guida in linea offre suggerimenti sulla risoluzione degli allarmi.

Paziente in sedia a rotelle con ventilatore

Dire addio al ventilatore: strumenti per i protocolli di svezzamento

Vogliamo che il paziente possa fare a meno del ventilatore il prima possibile. È per questo che mettiamo a disposizione vari strumenti per aiutare i medici a mettere in pratica i protocolli di svezzamento della struttura.

Questi strumenti comprendono supporti di tipo visivo e modalità di ventilazione progettate per promuovere la respirazione spontanea.

Professionisti che utilizzano la formazione online di Hamilton Medical

È ora di metter mano al ventilatore: percorsi di apprendimento e contenuti formativi

La nostra Academy online propone percorsi di formazione semplici per acquisire familiarità con i prodotti e le tecnologie Hamilton Medical il più rapidamente possibile.

Gail Spencer

Cosa dicono i clienti

L'ASV non solo agevola lo svezzamento dei pazienti dal ventilatore, riduce anche il numero di regolazioni manuali necessarie, permettendomi di passare più tempo con i miei pazienti.

Gail Spencer

RRT, esperto in terapia respiratoria
BridgePoint Continuing Care Hospital National Harborside, Washington DC, USA

Per il futuro

Illustrazione con bussola che punta verso il futuro

Una costante evoluzione per ampliare le capacità del ventilatore

Siamo costantemente al lavoro affinché i nostri prodotti possano evolversi. Aggiungiamo nuove funzionalità e miglioriamo quelle esistenti per garantire agli utenti la possibilità di utilizzare le tecnologie di ventilazione più avveniristiche nell'arco della vita utile di un ventilatore.

Come manteniamo i ventilatori sempre aggiornati
La famiglia di ventilatori Hamilton La famiglia di ventilatori Hamilton

Visto uno, visti tutti: un'interfaccia utente universale

In terapia intensiva, nella sala per imaging RM o durante il trasporto: l'interfaccia di tutti i tipi di ventilatori Hamilton Medical funziona sempre nello stesso modo.

Il nostro Ventilation Cockpit visualizza dati complessi all'interno di viste intuitive.

Per una soluzione completa

Accessori totalmente integrati

Progettiamo i nostri accessori mettendo al centro dell'attenzione la massima sicurezza del paziente e la facilità d'uso. Quando possibile, li integriamo nei nostri ventilatori per semplificare l'utilizzo del sistema di ventilazione nel suo complesso.

I nostri prodotti di consumo

Tutti i prodotti originali Hamilton Medical sono progettati per fornire prestazioni ottimali se usati con i ventilatori Hamilton Medical. Per garantire la massima soddisfazione dell'utente e tutelare al meglio il paziente puntiamo ai più elevati standard di qualità e sicurezza.
Foto di un dipendente

Parlate con i nostri esperti. Discutiamo delle vostre esigenze

Il nostro team di esperti di ventilazione è lieto di assistervi nella scelta del ventilatore perfetto per il vostro ambiente clinico e di aiutarvi a raggiungere i vostri obiettivi terapeutici. Richiedete un preventivo personalizzato o richiedete una telefonata per maggiori informazioni.

Bibliografia

  1. 1. Kirakli C, Naz I, Ediboglu O, Tatar D, Budak A, Tellioglu E. A randomized controlled trial comparing the ventilation duration between adaptive support ventilation and pressure assist/control ventilation in medical patients in the ICU. Chest. 2015;147(6):1503‑1509. doi:10.1378/chest.14‑2599
  2. 2. Tam MK, Wong WT, Gomersall CD, et al. A randomized controlled trial of 2 protocols for weaning cardiac surgical patients receiving adaptive support ventilation. J Crit Care. 2016;33:163‑168. doi:10.1016/j.jcrc.2016.01.018
  3. 3. Zhu F, Gomersall CD, Ng SK, Underwood MJ, Lee A. A randomized controlled trial of adaptive support ventilation mode to wean patients after fast‑track cardiac valvular surgery. Anesthesiology. 2015;122(4):832‑840. doi:10.1097/ALN.0000000000000589
  4. 4. Beijers AJ, Roos AN, Bindels AJ. Fully automated closed‑loop ventilation is safe and effective in post‑cardiac surgery patients. Intensive Care Med. 2014;40(5):752‑753. doi:10.1007/s00134‑014‑3234‑7
  5. 5. Bialais E, Wittebole X, Vignaux L, et al. Closed‑loop ventilation mode (IntelliVent®‑ASV) in intensive care unit: a randomized trial. Minerva Anestesiol. 2016;82(6):657‑668.

 

  1. 6. Fot EV, Izotova NN, Yudina AS, Smetkin AA, Kuzkov VV, Kirov MY. Automated Weaning from Mechanical Ventilation after Off‑Pump Coronary Artery Bypass Grafting. Front Med (Lausanne). 2017;4:31. Published 2017 Mar 21. doi:10.3389/fmed.2017.00031
  2. 7. Arnal JM, Saoli M, Garnero A. Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT‑ASV in passive, mechanically ventilated ICU patients. Heart Lung. 2020;49(4):427‑434. doi:10.1016/j.hrtlng.2019.11.001
  3. 8. Chenelle CT, Oto J, Sulemanji D, Fisher DF, Kacmarek RM. Evaluation of an automated endotracheal tube cuff controller during simulated mechanical ventilation. Respir Care. 2015;60(2):183‑190. doi:10.4187/respcare.03387
  4. 100. Dhand R. New frontiers in aerosol delivery during mechanical ventilation. Respir Care. 2004;49(6):666‑677.
  5. 101. Waldrep JC, Dhand R. Advanced nebulizer designs employing vibrating mesh/aperture plate technologies for aerosol generation. Curr Drug Deliv. 2008;5(2):114‑119. doi:10.2174/156720108783954815

Note

  • a. Non disponibile in tutti i mercati
  • b. Disponibile solo per i ventilatori HAMILTON‑C6/G5/S1

 

  • e. L'HAMILTON‑H900 non è approvato per l'uso durante il trasporto
  • f. Nota anche come "terapia con ossigeno ad alto flusso". Questo termine e il termine "terapia ad alto flusso con cannula nasale" sono equivalenti.

State accedendo al sito dal Paese Stati Uniti.
Per il vostro Paese (Stati Uniti) è disponibile anche una versione dedicata del sito.

Passare a Stati Uniti

A randomized controlled trial comparing the ventilation duration between adaptive support ventilation and pressure assist/control ventilation in medical patients in the ICU.

Kirakli C, Naz I, Ediboglu O, Tatar D, Budak A, Tellioglu E. A randomized controlled trial comparing the ventilation duration between adaptive support ventilation and pressure assist/control ventilation in medical patients in the ICU. Chest. 2015;147(6):1503‑1509. doi:10.1378/chest.14‑2599



BACKGROUND

Adaptive support ventilation (ASV) is a closed loop mode of mechanical ventilation (MV) that provides a target minute ventilation by automatically adapting inspiratory pressure and respiratory rate with the minimum work of breathing on the part of the patient. The aim of this study was to determine the effect of ASV on total MV duration when compared with pressure assist/control ventilation.

METHODS

Adult medical patients intubated and mechanically ventilated for > 24 h in a medical ICU were randomized to either ASV or pressure assist/control ventilation. Sedation and medical treatment were standardized for each group. Primary outcome was the total MV duration. Secondary outcomes were the weaning duration, number of manual settings of the ventilator, and weaning success rates.

RESULTS

Two hundred twenty‑nine patients were included. Median MV duration until weaning, weaning duration, and total MV duration were significantly shorter in the ASV group (67 [43‑94] h vs 92 [61‑165] h, P = .003; 2 [2‑2] h vs 2 [2‑80] h, P = .001; and 4 [2‑6] days vs 4 [3‑9] days, P = .016, respectively). Patients in the ASV group required fewer total number of manual settings on the ventilator to reach the desired pH and Paco2 levels (2 [1‑2] vs 3 [2‑5], P < .001). The number of patients extubated successfully on the first attempt was significantly higher in the ASV group (P = .001). Weaning success and mortality at day 28 were comparable between the two groups.

CONCLUSIONS

In medical patients in the ICU, ASV may shorten the duration of weaning and total MV duration with a fewer number of manual ventilator settings.

TRIAL REGISTRY

ClinicalTrials.gov; No.: NCT01472302; URL: www.clinicaltrials.gov.

A randomized controlled trial of 2 protocols for weaning cardiac surgical patients receiving adaptive support ventilation.

Tam MK, Wong WT, Gomersall CD, et al. A randomized controlled trial of 2 protocols for weaning cardiac surgical patients receiving adaptive support ventilation. J Crit Care. 2016;33:163‑168. doi:10.1016/j.jcrc.2016.01.018



PURPOSE

This study aims to compare the effectiveness of weaning with adaptive support ventilation (ASV) incorporating progressively reduced or constant target minute ventilation in the protocol in postoperative care after cardiac surgery.

MATERIAL AND METHODS

A randomized controlled unblinded study of 52 patients after elective coronary artery bypass surgery was carried out to determine whether a protocol incorporating a decremental target minute ventilation (DTMV) results in more rapid weaning of patients ventilated in ASV mode compared to a protocol incorporating a constant target minute ventilation.

RESULTS

Median duration of mechanical ventilation (145 vs 309 minutes; P = .001) and intubation (225 vs 423 minutes; P = .005) were significantly shorter in the DTMV group. There was no difference in adverse effects (42% vs 46%) or mortality (0% vs 0%) between the 2 groups.

CONCLUSIONS

Use of a DTMV protocol for postoperative ventilation of cardiac surgical patients in ASV mode results in a shorter duration of ventilation and intubation without evidence of increased risk of adverse effects.

A randomized controlled trial of adaptive support ventilation mode to wean patients after fast‑track cardiac valvular surgery.

Zhu F, Gomersall CD, Ng SK, Underwood MJ, Lee A. A randomized controlled trial of adaptive support ventilation mode to wean patients after fast‑track cardiac valvular surgery. Anesthesiology. 2015;122(4):832‑840. doi:10.1097/ALN.0000000000000589



BACKGROUND

Adaptive support ventilation can speed weaning after coronary artery surgery compared with protocolized weaning using other modes. There are no data to support this mode of weaning after cardiac valvular surgery. Furthermore, control group weaning times have been long, suggesting that the results may reflect control group protocols that delay weaning rather than a real advantage of adaptive support ventilation.

METHODS

Randomized (computer‑generated sequence and sealed opaque envelopes), parallel‑arm, unblinded trial of adaptive support ventilation versus physician‑directed weaning after adult fast‑track cardiac valvular surgery. The primary outcome was duration of mechanical ventilation. Patients aged 18 to 80 yr without significant renal, liver, or lung disease or severe impairment of left ventricular function undergoing uncomplicated elective valve surgery were eligible. Care was standardized, except postoperative ventilation. In the adaptive support ventilation group, target minute ventilation and inspired oxygen concentration were adjusted according to blood gases. A spontaneous breathing trial was carried out when the total inspiratory pressure of 15 cm H2O or less with positive end‑expiratory pressure of 5 cm H2O. In the control group, the duty physician made all ventilatory decisions.

RESULTS

Median duration of ventilation was statistically significantly shorter (P = 0.013) in the adaptive support ventilation group (205 [141 to 295] min, n = 30) than that in controls (342 [214 to 491] min, n = 31). Manual ventilator changes and alarms were less common in the adaptive support ventilation group, and arterial blood gas estimations were more common.

CONCLUSION

Adaptive support ventilation reduces ventilation time by more than 2 h in patients who have undergone fast-track cardiac valvular surgery while reducing the number of manual ventilator changes and alarms.

Fully automated closed‑loop ventilation is safe and effective in post‑cardiac surgery patients.

Beijers AJ, Roos AN, Bindels AJ. Fully automated closed‑loop ventilation is safe and effective in post‑cardiac surgery patients. Intensive Care Med. 2014;40(5):752‑753. doi:10.1007/s00134‑014‑3234‑7

Closed‑loop ventilation mode (IntelliVent®‑ASV) in intensive care unit: a randomized trial.

Bialais E, Wittebole X, Vignaux L, et al. Closed‑loop ventilation mode (IntelliVent®‑ASV) in intensive care unit: a randomized trial. Minerva Anestesiol. 2016;82(6):657‑668.



BACKGROUND

Closed‑loop modes automatically adjust ventilation settings, delivering individualized ventilation over short periods of time. The objective of this randomized controlled trial was to compare safety, efficacy and workload for the health care team between IntelliVent®‑ASV and conventional modes over a 48‑hour period.

METHODS

ICU patients admitted with an expected duration of mechanical ventilation of more than 48 hours were randomized to IntelliVent®-ASV or conventional ventilation modes. All ventilation parameters were recorded breath-by-breath. The number of manual adjustments assesses workload for the healthcare team. Safety and efficacy were assessed by calculating the time spent within previously defined ranges of non-optimal and optimal ventilation, respectively.

RESULTS

Eighty patients were analyzed. The median values of ventilation parameters over 48 hours were similar in both groups except for PEEP (7[4] cmH2O versus 6[3] cmH2O with IntelliVent®-ASV and conventional ventilation, respectively, P=0.028) and PETCO2 (36±7 mmHg with IntelliVent®-ASV versus 40±8 mmHg with conventional ventilation, P=0.041). Safety was similar between IntelliVent®-ASV and conventional ventilation for all parameters except for PMAX, which was more often non-optimal with IntelliVent®-ASV (P=0.001). Efficacy was comparable between the 2 ventilation strategies, except for SpO2 and VT, which were more often optimal with IntelliVent®-ASV (P=0.005, P=0.016, respectively). IntelliVent®-ASV required less manual adjustments than conventional ventilation (P<0.001) for a higher total number of adjustments (P<0.001). The coefficient of variation over 48 hours was larger with IntelliVent®-ASV in regard of maximum pressure, inspiratory pressure (PINSP), and PEEP as compared to conventional ventilation.

CONCLUSIONS

IntelliVent®-ASV required less manual intervention and delivered more variable PEEP and PINSP, while delivering ventilation safe and effective ventilation in terms of VT, RR, SpO2 and PETCO2.

Automated Weaning from Mechanical Ventilation after Off‑Pump Coronary Artery Bypass Grafting.

Fot EV, Izotova NN, Yudina AS, Smetkin AA, Kuzkov VV, Kirov MY. Automated Weaning from Mechanical Ventilation after Off‑Pump Coronary Artery Bypass Grafting. Front Med (Lausanne). 2017;4:31. Published 2017 Mar 21. doi:10.3389/fmed.2017.00031



BACKGROUND

The discontinuation of mechanical ventilation after coronary surgery may prolong and significantly increase the load on intensive care unit personnel. We hypothesized that automated mode using INTELLiVENT‑ASV can decrease duration of postoperative mechanical ventilation, reduce workload on medical staff, and provide safe ventilation after off‑pump coronary artery bypass grafting (OPCAB). The primary endpoint of our study was to assess the duration of postoperative mechanical ventilation during different modes of weaning from respiratory support (RS) after OPCAB. The secondary endpoint was to assess safety of the automated weaning mode and the number of manual interventions to the ventilator settings during the weaning process in comparison with the protocolized weaning mode.

MATERIALS AND METHODS

Forty adult patients undergoing elective OPCAB were enrolled into a prospective single-center study. Patients were randomized into two groups: automated weaning (n = 20) using INTELLiVENT-ASV mode with quick-wean option; and protocolized weaning (n = 20), using conventional synchronized intermittent mandatory ventilation (SIMV) + pressure support (PS) mode. We assessed the duration of postoperative ventilation, incidence and duration of unacceptable RS, and the load on medical staff. We also performed the retrospective analysis of 102 patients (standard weaning) who were weaned from ventilator with SIMV + PS mode based on physician's experience without prearranged algorithm.

RESULTS AND DISCUSSION

Realization of the automated weaning protocol required change in respiratory settings in 2 patients vs. 7 (5-9) adjustments per patient in the protocolized weaning group. Both incidence and duration of unacceptable RS were reduced significantly by means of the automated weaning approach. The FiO2 during spontaneous breathing trials was significantly lower in the automated weaning group: 30 (30-35) vs. 40 (40-45) % in the protocolized weaning group (p < 0.01). The average time until tracheal extubation did not differ in the automated weaning and the protocolized weaning groups: 193 (115-309) and 197 (158-253) min, respectively, but increased to 290 (210-411) min in the standard weaning group.

CONCLUSION

The automated weaning system after off-pump coronary surgery might provide postoperative ventilation in a more protective way, reduces the workload on medical staff, and does not prolong the duration of weaning from ventilator. The use of automated or protocolized weaning can reduce the duration of postoperative mechanical ventilation in comparison with non-protocolized weaning based on the physician's decision.

Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT‑ASV in passive, mechanically ventilated ICU patients.

Arnal JM, Saoli M, Garnero A. Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT‑ASV in passive, mechanically ventilated ICU patients. Heart Lung. 2020;49(4):427‑434. doi:10.1016/j.hrtlng.2019.11.001



BACKGROUND

Driving pressure (ΔP) and mechanical power (MP) are predictors of the risk of ventilation‑ induced lung injuries (VILI) in mechanically ventilated patients. INTELLiVENT‑ASV® is a closed‑loop ventilation mode that automatically adjusts respiratory rate and tidal volume, according to the patient's respiratory mechanics.

OBJECTIVES

This prospective observational study investigated ΔP and MP (and also transpulmonary ΔP (ΔPL) and MP (MPL) for a subgroup of patients) delivered by INTELLiVENT-ASV.

METHODS

Adult patients admitted to the ICU were included if they were sedated and met the criteria for a single lung condition (normal lungs, COPD, or ARDS). INTELLiVENT-ASV was used with default target settings. If PEEP was above 16 cmH2O, the recruitment strategy used transpulmonary pressure as a reference, and ΔPL and MPL were computed. Measurements were made once for each patient.

RESULTS

Of the 255 patients included, 98 patients were classified as normal-lungs, 28 as COPD, and 129 as ARDS patients. The median ΔP was 8 (7 - 10), 10 (8 - 12), and 9 (8 - 11) cmH2O for normal-lungs, COPD, and ARDS patients, respectively. The median MP was 9.1 (4.9 - 13.5), 11.8 (8.6 - 16.5), and 8.8 (5.6 - 13.8) J/min for normal-lungs, COPD, and ARDS patients, respectively. For the 19 patients managed with transpulmonary pressure ΔPL was 6 (4 - 7) cmH2O and MPL was 3.6 (3.1 - 4.4) J/min.

CONCLUSIONS

In this short term observation study, INTELLiVENT-ASV selected ΔP and MP considered in safe ranges for lung protection. In a subgroup of ARDS patients, the combination of a recruitment strategy and INTELLiVENT-ASV resulted in an apparently safe ΔPL and MPL.

Evaluation of an automated endotracheal tube cuff controller during simulated mechanical ventilation.

Chenelle CT, Oto J, Sulemanji D, Fisher DF, Kacmarek RM. Evaluation of an automated endotracheal tube cuff controller during simulated mechanical ventilation. Respir Care. 2015;60(2):183‑190. doi:10.4187/respcare.03387



BACKGROUND

Maintaining endotracheal tube cuff pressure within a narrow range is an important factor in patient care. The goal of this study was to evaluate the IntelliCuff against the manual technique for maintaining cuff pressure during simulated mechanical ventilation with and without movement.

METHODS

The IntelliCuff was compared to the manual technique of a manometer and syringe. Two independent studies were performed during mechanical ventilation: part 1, a 2‑h trial incorporating continuous mannikin head movement; and part 2, an 8‑h trial using a stationary trachea model. We set cuff pressure to 25 cm H2O, PEEP to 10 cm H2O, and peak inspiratory pressures to 20, 30, and 40 cm H2O. Clinical importance was defined as both statistically significant (P<.05) and clinically significant (pressure change [Δ]>10%).

RESULTS

In part 1, the change in cuff pressure from before to after ventilation was clinically important for the manual technique (P<.001, Δ=-39.6%) but not for the IntelliCuff (P=.02, Δ=3.5%). In part 2, the change in cuff pressure from before to after ventilation was clinically important for the manual technique (P=.004, Δ=-14.39%) but not for the IntelliCuff (P=.20, Δ=5.65%).

CONCLUSIONS

There was a clinically important drop in manually set cuff pressure during simulated mechanical ventilation in a stationary model and an even larger drop with movement, but this was significantly reduced by the IntelliCuff in both scenarios. Additionally, we observed that cuff pressure varied directly with inspiratory airway pressure for both techniques, leading to elevated average cuff pressures.

New frontiers in aerosol delivery during mechanical ventilation.

Dhand R. New frontiers in aerosol delivery during mechanical ventilation. Respir Care. 2004;49(6):666‑677.

The scientific basis for inhalation therapy in mechanically‑ventilated patients is now firmly established. A variety of new devices that deliver drugs to the lung with high efficiency could be employed for drug delivery during mechanical ventilation. Encapsulation of drugs within liposomes could increase the amount of drug delivered, prolong the effect of a dose, and minimize adverse effects. With improved inhalation devices and surfactant formulations, inhaled surfactant could be employed for several indications in mechanically‑ventilated patients. Research is unraveling the causes of some disorders that have been poorly understood, and our improved understanding of the causal mechanisms of various respiratory disorders will provide new applications for inhaled therapies.

Advanced nebulizer designs employing vibrating mesh/aperture plate technologies for aerosol generation.

Waldrep JC, Dhand R. Advanced nebulizer designs employing vibrating mesh/aperture plate technologies for aerosol generation. Curr Drug Deliv. 2008;5(2):114‑119. doi:10.2174/156720108783954815

Recent technological advances and improved nebulizer designs have overcome many limitations of jet nebulizers. Newer devices employ a vibrating mesh or aperture plate (VM/AP) for the generation of therapeutic aerosols with consistent, increased efficiency, predominant aerosol fine particle fractions, low residuals, and the ability to nebulize even microliter volumes. These enhancements are achieved through several different design features and include improvements that promote patient compliance, such as compact design, portability, shorter treatment durations, and quiet operation. Current VM/AP devices in clinical use are the Omron MicroAir, the Nektar Aeroneb, and the Pari eFlow. However, some devices are only approved for use with specific medications. Development of "smart nebulizers" such as the Respironics I‑neb couple VM technologies with coordinated delivery and optimized inhalation patterns to enhance inhaled drug delivery of specialized, expensive formulations. Ongoing development of advanced aerosol technologies should improve clinical outcomes and continue to expand therapeutic options as newer inhaled drugs become available.