我们检测到您正在 美国 访问我们的网站。
我们针对您的国家(美国)提供单独版本的网站。

切换至 美国
 技术

INTELLiVENT®-ASV®。 您的床旁助手

图:四个未点亮的灯泡和一个点亮的灯泡

达到一个新的水平! INTELLiVENT-ASV 的价值

我们的智能通气模式能使您从操作者转变为监督者。INTELLiVENT-ASV 减少与呼吸机手动互动的次数 (Beijers AJ, Roos AN, Bindels AJ.Fully automated closed-loop ventilation is safe and effective in post-cardiac surgery patients.Intensive Care Med.2014;40(5):752-753. doi:10.1007/s00134-014-3234-71​, Bialais E, Wittebole X, Vignaux L, et al.Closed-loop ventilation mode (IntelliVent®-ASV) in intensive care unit: a randomized trial.Minerva Anestesiol.2016;82(6):657-668.2​, Fot EV, Izotova NN, Yudina AS, Smetkin AA, Kuzkov VV, Kirov MY.Automated Weaning from Mechanical Ventilation after Off-Pump Coronary Artery Bypass Grafting.Front Med (Lausanne).2017;4:31.Published 2017 Mar 21. Doi:10.3389/fmed.2017.000313),以及为您的病人提供个性化肺保护通气支持 (Bialais E, Wittebole X, Vignaux L, et al.Closed-loop ventilation mode (IntelliVent®-ASV) in intensive care unit: a randomized trial.Minerva Anestesiol.2016;82(6):657-668.2​, Fot EV, Izotova NN, Yudina AS, Smetkin AA, Kuzkov VV, Kirov MY.Automated Weaning from Mechanical Ventilation after Off-Pump Coronary Artery Bypass Grafting.Front Med (Lausanne).2017;4:31.Published 2017 Mar 21. doi:10.3389/fmed.2017.000313​, Arnal JM, Saoli M, Garnero A. Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT-ASV in passive, mechanically ventilated ICU patients.Heart Lung.2020;49(4):427-434. doi:10.1016/j.hrtlng.2019.11.0014​)。从插管到拔管。

通气模式 ASV(左侧)和 INTELLiVENT-ASV(右侧)

它有何不同? 典范转移

在常规模式下,您设置多个呼吸机控制参数(如潮气量或压力、呼吸频率、FiO2、PEEP 和呼气及吸气时间)来实现某些临床目标。此外,所有这些控制参数都需要频繁再评估和调节。

使用 INTELLiVENT-ASV,您所确定的临床目标和对氧合和通气的策略即为重点。设定上述目标后,您可以决定 INTELLiVENT-ASV 控制氧合和通气的程度范围,从而实现该目标。

然后 INTELLiVENT-ASV 自动选择呼吸机设置,管理被动和主动呼吸状态之间的转换,并利用快速撤机功能主动为您的撤机方案提供支持。

图:插管病人及其旁边的医生

是否适合我的病人? 适用于插管的成人和儿童病人

多项国际研究证明了 INTELLiVENT-ASV 在各种临床情景中的安全性和性能——从心脏手术后 (Beijers AJ, Roos AN, Bindels AJ.Fully automated closed-loop ventilation is safe and effective in post-cardiac surgery patients.Intensive Care Med.2014;40(5):752-753. doi:10.1007/s00134-014-3234-71) 到新冠肺炎 (Wendel Garcia PD, Hofmaenner DA, Brugger SD, et al.Closed-Loop Versus Conventional Mechanical Ventilation in COVID-19 ARDS.J Intensive Care Med.2021;36(10):1184-1193. doi:10.1177/088506662110241395),以及各种特定状况,例如 COPD (Arnal JM, Saoli M, Garnero A. Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT-ASV in passive, mechanically ventilated ICU patients.Heart Lung.2020;49(4):427-434. doi:10.1016/j.hrtlng.2019.11.0014)、脑损伤 (Sulemanji DS, Marchese A, Wysocki M, Kacmarek RM.Adaptive support ventilation with and without end-tidal CO2 closed loop control versus conventional ventilation.Intensive Care Med.2013;39(4):703-710. doi:10.1007/s00134-012-2742-66), 和 ARDS  (Arnal JM, Saoli M, Garnero A. Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT-ASV in passive, mechanically ventilated ICU patients.Heart Lung.2020;49(4):427-434. doi:10.1016/j.hrtlng.2019.11.0014​)。

Laurent Buscemi Adrian Wäckerlin 博士 João Alves 博士

客户评语

INTELLiVENT-ASV 节省了我们的时间,利用节省的时间,我们可以完成 ICU 的其它重要工作,如照顾病人和提供基本医疗服务。

Laurent Buscemi

ICU 护士
Intercommunal Hospital,Var Departement,France(法国)

客户评语

Hamilton Medical 哈美顿医疗公司在 ICU 建立自动化通气的概念是沿着正确方向迈出的一大步。

Adrian Wäckerlin 博士

ICU 主管
瑞士库尔格劳宾登州州立医院

客户评语

从临床护理的角度来看,INTELLIVENT-ASV 使我们能够在处理决策中更关键的职责时,对病人实施背景工作。

João Alves 博士

监护医师,内科和急诊科,自 2018 年
里斯本大学附属医院中心,葡萄牙里斯本

Jean-Michel Arnal 博士,高级医师 Jean-Michel Arnal 博士,高级医师

工作原理是什么? INTELLiVENT-ASV 提供床旁说明

在本视频中,高级医师 Jean-Michel Arnal 博士在真实 ICU 病人中为您快速演示了 INTELLiVENT-ASV 的主要功能和设置。

图:飞镖瞄准靶

准备,确定目标,通气! 如何开始

开始时,设置病人的身高、性别和(必要时)特定状况:ARDS、慢性高碳酸血症或脑损伤。接着,为病人设置氧合状态 (SpO2) 和 CO2 清除状态 (PetCO2) 有关的临床目标。

 

然后,通过各种选项微调 INTELLiVENT-ASV。例如,您可以决定是否想要手动设置 PEEP,还是想要 INTELLiVENT-ASV 在您定义的范围内设置 PEEP。审查或设置报警限值后,即准备好开始通气。

图:飞镖射中靶

让病人保持在目标值范围内。 如何调整通气

INTELLiVENT-ASV 在床旁实施您的策略。您无需频繁更改个人设置,仅在必要时监测并重新调整目标和策略。

 

INTELLiVENT-ASV 旨在使病人在您定义的目标范围内,并予以保持,同时维持肺保护通气 (Bialais E, Wittebole X, Vignaux L, et al.Closed-loop ventilation mode (IntelliVent®-ASV) in intensive care unit: a randomized trial.Minerva Anestesiol.2016;82(6):657-668.2​, Fot EV, Izotova NN, Yudina AS, Smetkin AA, Kuzkov VV, Kirov MY.Automated Weaning from Mechanical Ventilation after Off-Pump Coronary Artery Bypass Grafting.Front Med (Lausanne).2017;4:31.Published 2017 Mar 21. doi:10.3389/fmed.2017.000313​, Arnal JM, Saoli M, Garnero A. Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT-ASV in passive, mechanically ventilated ICU patients.Heart Lung.2020;49(4):427-434. doi:10.1016/j.hrtlng.2019.11.0014​)。它持续调整个人呼吸机控制参数(例如呼吸频率、潮气量、吸气压力、PEEP 和 FiO2),并在控制和辅助通气之间切换——所有这些全部基于每次呼吸时都会评估的生理输入数据。

 

这些输入数据通过下面三个传感器测量:近端流量传感器提供肺力学指标和病人活动有关的数据,SpO2 和 CO2 传感器提供氧合状态和 CO2 清除状态有关的数据。

统计图:病人撤机的 3 个阶段

让病人撤机! 如何让您的病人撤机

利用 INTELLiVENT-ASV 的快速撤机功能实施您的撤机方案。当病人自主呼吸时,您可以在通气过程中启用“快速撤机”。

您可以通过启用 SBT 配置“快速撤机”,以评估您的病人是否适于脱离呼吸机。您可以调整开始 SBT 的标准,运行 SBT 时使用的设置,以及中断 SBT 的标准。

INTELLiVENT-ASV 始终显示所有已执行 SBT 的历史。如果 SBT 失败,则 INTELLiVENT-ASV 恢复以前的通气设置。

统计图:Lellouche F. Intensive Care Med.2013 Mar;39(3):463-471.

有哪些获益? 了解证据

临床研究表明 INTELLiVENT-ASV 选择安全的驱动压力 (Arnal JM, Saoli M, Garnero A. Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT-ASV in passive, mechanically ventilated ICU patients.Heart Lung.2020;49(4):427-434. Doi:10.1016/j.hrtlng.2019.11.0014),安全的机械功率 (Arnal JM, Saoli M, Garnero A. Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT-ASV in passive, mechanically ventilated ICU patients.Heart Lung.2020;49(4):427-434. doi:10.1016/j.hrtlng.2019.11.0014),以及安全的潮气量 (Lellouche F, Bouchard PA, Simard S, L'Her E, Wysocki M. Evaluation of fully automated ventilation: a randomized controlled study in post-cardiac surgery patients.Intensive Care Med.2013;39(3):463-471. doi:10.1007/s00134-012-2799-27​)。

相比常规通气,INTELLiVENT-ASV 需要更少的手动调整,因此有助于减少医务人员的工作量 (Beijers AJ, Roos AN, Bindels AJ.Fully automated closed-loop ventilation is safe and effective in post-cardiac surgery patients.Intensive Care Med.2014;40(5):752-753. doi:10.1007/s00134-014-3234-71​, Bialais E, Wittebole X, Vignaux L, et al.Closed-loop ventilation mode (IntelliVent®-ASV) in intensive care unit: a randomized trial.Minerva Anestesiol.2016;82(6):657-668.2​, Fot EV, Izotova NN, Yudina AS, Smetkin AA, Kuzkov VV, Kirov MY.Automated Weaning from Mechanical Ventilation after Off-Pump Coronary Artery Bypass Grafting.Front Med (Lausanne).2017;4:31.Published 2017 Mar 21. doi:10.3389/fmed.2017.000313​)。

图:学生们将帽子抛向空中

不可不知! INTELLiVENT-ASV 培训资源

可用性

INTELLiVENT-ASV 为 HAMILTON-G5、HAMILTON-C6, HAMILTON-C3、HAMILTON-C1 和 HAMILTON-T1 的选配模式,HAMILTON-S1 的标准模式。

参考文献

  1. 1. Beijers AJ, Roos AN, Bindels AJ. Fully automated closed-loop ventilation is safe and effective in post-cardiac surgery patients. Intensive Care Med. 2014;40(5):752-753. doi:10.1007/s00134-014-3234-7
  2. 2. Bialais E, Wittebole X, Vignaux L, et al. Closed-loop ventilation mode (IntelliVent®-ASV) in intensive care unit: a randomized trial. Minerva Anestesiol. 2016;82(6):657-668.
  3. 3. Fot EV, Izotova NN, Yudina AS, Smetkin AA, Kuzkov VV, Kirov MY. Automated Weaning from Mechanical Ventilation after Off-Pump Coronary Artery Bypass Grafting. Front Med (Lausanne). 2017;4:31. Published 2017 Mar 21. doi:10.3389/fmed.2017.00031
  4. 4. Arnal JM, Saoli M, Garnero A. Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT-ASV in passive, mechanically ventilated ICU patients. Heart Lung. 2020;49(4):427-434. doi:10.1016/j.hrtlng.2019.11.001

 

  1. 5. Wendel Garcia PD, Hofmaenner DA, Brugger SD, et al. Closed-Loop Versus Conventional Mechanical Ventilation in COVID-19 ARDS. J Intensive Care Med. 2021;36(10):1184-1193. doi:10.1177/08850666211024139
  2. 6. Sulemanji DS, Marchese A, Wysocki M, Kacmarek RM. Adaptive support ventilation with and without end-tidal CO2 closed loop control versus conventional ventilation. Intensive Care Med. 2013;39(4):703-710. doi:10.1007/s00134-012-2742-6
  3. 7. Lellouche F, Bouchard PA, Simard S, L'Her E, Wysocki M. Evaluation of fully automated ventilation: a randomized controlled study in post-cardiac surgery patients. Intensive Care Med. 2013;39(3):463-471. doi:10.1007/s00134-012-2799-2

脚注

 

Fully automated closed-loop ventilation is safe and effective in post-cardiac surgery patients.

Beijers AJ, Roos AN, Bindels AJ. Fully automated closed-loop ventilation is safe and effective in post-cardiac surgery patients. Intensive Care Med. 2014;40(5):752-753. doi:10.1007/s00134-014-3234-7

Closed-loop ventilation mode (IntelliVent®-ASV) in intensive care unit: a randomized trial.

Bialais E, Wittebole X, Vignaux L, et al. Closed-loop ventilation mode (IntelliVent®-ASV) in intensive care unit: a randomized trial. Minerva Anestesiol. 2016;82(6):657-668.



BACKGROUND

Closed-loop modes automatically adjust ventilation settings, delivering individualized ventilation over short periods of time. The objective of this randomized controlled trial was to compare safety, efficacy and workload for the health care team between IntelliVent®-ASV and conventional modes over a 48-hour period.

METHODS

ICU patients admitted with an expected duration of mechanical ventilation of more than 48 hours were randomized to IntelliVent®-ASV or conventional ventilation modes. All ventilation parameters were recorded breath-by-breath. The number of manual adjustments assesses workload for the healthcare team. Safety and efficacy were assessed by calculating the time spent within previously defined ranges of non-optimal and optimal ventilation, respectively.

RESULTS

Eighty patients were analyzed. The median values of ventilation parameters over 48 hours were similar in both groups except for PEEP (7[4] cmH2O versus 6[3] cmH2O with IntelliVent®-ASV and conventional ventilation, respectively, P=0.028) and PETCO2 (36±7 mmHg with IntelliVent®-ASV versus 40±8 mmHg with conventional ventilation, P=0.041). Safety was similar between IntelliVent®-ASV and conventional ventilation for all parameters except for PMAX, which was more often non-optimal with IntelliVent®-ASV (P=0.001). Efficacy was comparable between the 2 ventilation strategies, except for SpO2 and VT, which were more often optimal with IntelliVent®-ASV (P=0.005, P=0.016, respectively). IntelliVent®-ASV required less manual adjustments than conventional ventilation (P<0.001) for a higher total number of adjustments (P<0.001). The coefficient of variation over 48 hours was larger with IntelliVent®-ASV in regard of maximum pressure, inspiratory pressure (PINSP), and PEEP as compared to conventional ventilation.

CONCLUSIONS

IntelliVent®-ASV required less manual intervention and delivered more variable PEEP and PINSP, while delivering ventilation safe and effective ventilation in terms of VT, RR, SpO2 and PETCO2.

Automated Weaning from Mechanical Ventilation after Off-Pump Coronary Artery Bypass Grafting.

Fot EV, Izotova NN, Yudina AS, Smetkin AA, Kuzkov VV, Kirov MY. Automated Weaning from Mechanical Ventilation after Off-Pump Coronary Artery Bypass Grafting. Front Med (Lausanne). 2017;4:31. Published 2017 Mar 21. doi:10.3389/fmed.2017.00031



BACKGROUND

The discontinuation of mechanical ventilation after coronary surgery may prolong and significantly increase the load on intensive care unit personnel. We hypothesized that automated mode using INTELLiVENT-ASV can decrease duration of postoperative mechanical ventilation, reduce workload on medical staff, and provide safe ventilation after off-pump coronary artery bypass grafting (OPCAB). The primary endpoint of our study was to assess the duration of postoperative mechanical ventilation during different modes of weaning from respiratory support (RS) after OPCAB. The secondary endpoint was to assess safety of the automated weaning mode and the number of manual interventions to the ventilator settings during the weaning process in comparison with the protocolized weaning mode.

MATERIALS AND METHODS

Forty adult patients undergoing elective OPCAB were enrolled into a prospective single-center study. Patients were randomized into two groups: automated weaning (n = 20) using INTELLiVENT-ASV mode with quick-wean option; and protocolized weaning (n = 20), using conventional synchronized intermittent mandatory ventilation (SIMV) + pressure support (PS) mode. We assessed the duration of postoperative ventilation, incidence and duration of unacceptable RS, and the load on medical staff. We also performed the retrospective analysis of 102 patients (standard weaning) who were weaned from ventilator with SIMV + PS mode based on physician's experience without prearranged algorithm.

RESULTS AND DISCUSSION

Realization of the automated weaning protocol required change in respiratory settings in 2 patients vs. 7 (5-9) adjustments per patient in the protocolized weaning group. Both incidence and duration of unacceptable RS were reduced significantly by means of the automated weaning approach. The FiO2 during spontaneous breathing trials was significantly lower in the automated weaning group: 30 (30-35) vs. 40 (40-45) % in the protocolized weaning group (p < 0.01). The average time until tracheal extubation did not differ in the automated weaning and the protocolized weaning groups: 193 (115-309) and 197 (158-253) min, respectively, but increased to 290 (210-411) min in the standard weaning group.

CONCLUSION

The automated weaning system after off-pump coronary surgery might provide postoperative ventilation in a more protective way, reduces the workload on medical staff, and does not prolong the duration of weaning from ventilator. The use of automated or protocolized weaning can reduce the duration of postoperative mechanical ventilation in comparison with non-protocolized weaning based on the physician's decision.

Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT-ASV in passive, mechanically ventilated ICU patients.

Arnal JM, Saoli M, Garnero A. Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT-ASV in passive, mechanically ventilated ICU patients. Heart Lung. 2020;49(4):427-434. doi:10.1016/j.hrtlng.2019.11.001



BACKGROUND

Driving pressure (ΔP) and mechanical power (MP) are predictors of the risk of ventilation- induced lung injuries (VILI) in mechanically ventilated patients. INTELLiVENT-ASV® is a closed-loop ventilation mode that automatically adjusts respiratory rate and tidal volume, according to the patient's respiratory mechanics.

OBJECTIVES

This prospective observational study investigated ΔP and MP (and also transpulmonary ΔP (ΔPL) and MP (MPL) for a subgroup of patients) delivered by INTELLiVENT-ASV.

METHODS

Adult patients admitted to the ICU were included if they were sedated and met the criteria for a single lung condition (normal lungs, COPD, or ARDS). INTELLiVENT-ASV was used with default target settings. If PEEP was above 16 cmH2O, the recruitment strategy used transpulmonary pressure as a reference, and ΔPL and MPL were computed. Measurements were made once for each patient.

RESULTS

Of the 255 patients included, 98 patients were classified as normal-lungs, 28 as COPD, and 129 as ARDS patients. The median ΔP was 8 (7 - 10), 10 (8 - 12), and 9 (8 - 11) cmH2O for normal-lungs, COPD, and ARDS patients, respectively. The median MP was 9.1 (4.9 - 13.5), 11.8 (8.6 - 16.5), and 8.8 (5.6 - 13.8) J/min for normal-lungs, COPD, and ARDS patients, respectively. For the 19 patients managed with transpulmonary pressure ΔPL was 6 (4 - 7) cmH2O and MPL was 3.6 (3.1 - 4.4) J/min.

CONCLUSIONS

In this short term observation study, INTELLiVENT-ASV selected ΔP and MP considered in safe ranges for lung protection. In a subgroup of ARDS patients, the combination of a recruitment strategy and INTELLiVENT-ASV resulted in an apparently safe ΔPL and MPL.

Closed-Loop Versus Conventional Mechanical Ventilation in COVID-19 ARDS.

Wendel Garcia PD, Hofmaenner DA, Brugger SD, et al. Closed-Loop Versus Conventional Mechanical Ventilation in COVID-19 ARDS. J Intensive Care Med. 2021;36(10):1184-1193. doi:10.1177/08850666211024139



BACKGROUND

Lung-protective ventilation is key in bridging patients suffering from COVID-19 acute respiratory distress syndrome (ARDS) to recovery. However, resource and personnel limitations during pandemics complicate the implementation of lung-protective protocols. Automated ventilation modes may prove decisive in these settings enabling higher degrees of lung-protective ventilation than conventional modes.

METHOD

Prospective study at a Swiss university hospital. Critically ill, mechanically ventilated COVID-19 ARDS patients were allocated, by study-blinded coordinating staff, to either closed-loop or conventional mechanical ventilation, based on mechanical ventilator availability. Primary outcome was the overall achieved percentage of lung-protective ventilation in closed-loop versus conventional mechanical ventilation, assessed minute-by-minute, during the initial 7 days and overall mechanical ventilation time. Lung-protective ventilation was defined as the combined target of tidal volume <8 ml per kg of ideal body weight, dynamic driving pressure <15 cmH2O, peak pressure <30 cmH2O, peripheral oxygen saturation ≥88% and dynamic mechanical power <17 J/min.

RESULTS

Forty COVID-19 ARDS patients, accounting for 1,048,630 minutes (728 days) of cumulative mechanical ventilation, allocated to either closed-loop (n = 23) or conventional ventilation (n = 17), presenting with a median paO2/ FiO2 ratio of 92 [72-147] mmHg and a static compliance of 18 [11-25] ml/cmH2O, were mechanically ventilated for 11 [4-25] days and had a 28-day mortality rate of 20%. During the initial 7 days of mechanical ventilation, patients in the closed-loop group were ventilated lung-protectively for 65% of the time versus 38% in the conventional group (Odds Ratio, 1.79; 95% CI, 1.76-1.82; P < 0.001) and for 45% versus 33% of overall mechanical ventilation time (Odds Ratio, 1.22; 95% CI, 1.21-1.23; P < 0.001).

CONCLUSION

Among critically ill, mechanically ventilated COVID-19 ARDS patients during an early highpoint of the pandemic, mechanical ventilation using a closed-loop mode was associated with a higher degree of lung-protective ventilation than was conventional mechanical ventilation.

Adaptive support ventilation with and without end-tidal CO2 closed loop control versus conventional ventilation.

Sulemanji DS, Marchese A, Wysocki M, Kacmarek RM. Adaptive support ventilation with and without end-tidal CO2 closed loop control versus conventional ventilation. Intensive Care Med. 2013;39(4):703-710. doi:10.1007/s00134-012-2742-6



PURPOSE

Our aim was to compare adaptive support ventilation with and without closed loop control by end tidal CO2 (ASVCO2, ASV) with pressure (PC) and volume control ventilation (VC) during simulated clinical scenarios [normal lungs (N), COPD, ARDS, brain injury (BI)].

METHODS

A lung model was used to simulate representative compliance (mL/cmH2O): resistance (cmH2O/L/s) combinations, 45:5 for N and BI, 60:7.7 for COPD, 15:7.7 and 35:7.7 for ARDS. Two levels of PEEP (cmH2O) were used for each scenario, 12/16 for ARDS, and 5/10 for others. The CO2 productions of 2, 3, 4 and 5 mL/kg predicted body weight/min were simulated. Tidal volume was set to 6 mL/kg during VC and PC. Outcomes of interest were end tidal CO2 (etCO2) and plateau pressure (P Plat).

RESULTS

EtCO2 levels in N and BI and COPD were similar for all modes. In ARDS, etCO2 was higher in ASVCO2 than in other modes (p < 0.001). Under all mechanical conditions ASVCO2 revealed a narrower range of etCO2. P Plat was similar for all modes in all scenarios but ARDS where P Plat in ASV and ASVCO2 were lower than in VC (p = 0.001). When P Plat was ≥ 28 cmH2O, P plat in ASV and ASVCO2 were lower than in VC and PC (p = 0.024).

CONCLUSION

All modes performed similarly in most cases. Minor differences observed were in favor of the closed loop modes. Overall, ASVCO2 maintained tighter CO2 control. The ASVCO2 had the greatest impact during ARDS allowing etCO2 to increase and protecting against hypocapnia evident with other modes while ensuring lower P plat and tidal volumes.

Evaluation of fully automated ventilation: a randomized controlled study in post-cardiac surgery patients.

Lellouche F, Bouchard PA, Simard S, L'Her E, Wysocki M. Evaluation of fully automated ventilation: a randomized controlled study in post-cardiac surgery patients. Intensive Care Med. 2013;39(3):463-471. doi:10.1007/s00134-012-2799-2



PURPOSE

Discrepancies between the demand and availability of clinicians to care for mechanically ventilated patients can be anticipated due to an aging population and to increasing severity of illness. The use of closed-loop ventilation provides a potential solution. The aim of the study was to evaluate the safety of a fully automated ventilator.

METHODS

We conducted a randomized controlled trial comparing automated ventilation (AV) and protocolized ventilation (PV) in 60 ICU patients after cardiac surgery. In the PV group, tidal volume, respiratory rate, FiO(2) and positive end-expiratory pressure (PEEP) were set according to the local hospital protocol based on currently available guidelines. In the AV group, only sex, patient height and a maximum PEEP level of 10 cmH(2)O were set. The primary endpoint was the duration of ventilation within a "not acceptable" range of tidal volume. Zones of optimal, acceptable and not acceptable ventilation were based on several respiratory parameters and defined a priori.

RESULTS

The patients were assigned equally to each group, 30 to PV and 30 to AV. The percentage of time within the predefined zones of optimal, acceptable and not acceptable ventilation were 12 %, 81 %, and 7 % respectively with PV, and 89.5 %, 10 % and 0.5 % with AV (P < 0.001). There were 148 interventions required during PV compared to only 5 interventions with AV (P < 0.001).

CONCLUSION

Fully AV was safe in hemodynamically stable patients immediately following cardiac surgery. In addition to a reduction in the number of interventions, the AV system maintained patients within a predefined target range of optimal ventilation.